Spaces:
Running
Running
File size: 13,452 Bytes
95f8bbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
# -*- coding: utf-8 -*-
import torch
import json
import os
import zipfile
import time
from multiprocessing.dummy import Pool as ThreadPool
import numpy as np
from opt import opt
''' Constant Configuration '''
delta1 = 1
mu = 1.7
delta2 = 2.65
gamma = 22.48
scoreThreds = 0.3
matchThreds = 5
areaThres = 0#40 * 40.5
alpha = 0.1
#pool = ThreadPool(4)
def pose_nms(bboxes, bbox_scores, pose_preds, pose_scores):
'''
Parametric Pose NMS algorithm
bboxes: bbox locations list (n, 4)
bbox_scores: bbox scores list (n,)
pose_preds: pose locations list (n, 17, 2)
pose_scores: pose scores list (n, 17, 1)
'''
#global ori_pose_preds, ori_pose_scores, ref_dists
pose_scores[pose_scores == 0] = 1e-5
final_result = []
ori_bbox_scores = bbox_scores.clone()
ori_pose_preds = pose_preds.clone()
ori_pose_scores = pose_scores.clone()
xmax = bboxes[:, 2]
xmin = bboxes[:, 0]
ymax = bboxes[:, 3]
ymin = bboxes[:, 1]
widths = xmax - xmin
heights = ymax - ymin
ref_dists = alpha * np.maximum(widths, heights)
nsamples = bboxes.shape[0]
human_scores = pose_scores.mean(dim=1)
human_ids = np.arange(nsamples)
# Do pPose-NMS
pick = []
merge_ids = []
while(human_scores.shape[0] != 0):
# Pick the one with highest score
pick_id = torch.argmax(human_scores)
pick.append(human_ids[pick_id])
# num_visPart = torch.sum(pose_scores[pick_id] > 0.2)
# Get numbers of match keypoints by calling PCK_match
ref_dist = ref_dists[human_ids[pick_id]]
simi = get_parametric_distance(pick_id, pose_preds, pose_scores, ref_dist)
num_match_keypoints = PCK_match(pose_preds[pick_id], pose_preds, ref_dist)
# Delete humans who have more than matchThreds keypoints overlap and high similarity
delete_ids = torch.from_numpy(np.arange(human_scores.shape[0]))[(simi > gamma) | (num_match_keypoints >= matchThreds)]
if delete_ids.shape[0] == 0:
delete_ids = pick_id
#else:
# delete_ids = torch.from_numpy(delete_ids)
merge_ids.append(human_ids[delete_ids])
pose_preds = np.delete(pose_preds, delete_ids, axis=0)
pose_scores = np.delete(pose_scores, delete_ids, axis=0)
human_ids = np.delete(human_ids, delete_ids)
human_scores = np.delete(human_scores, delete_ids, axis=0)
bbox_scores = np.delete(bbox_scores, delete_ids, axis=0)
assert len(merge_ids) == len(pick)
preds_pick = ori_pose_preds[pick]
scores_pick = ori_pose_scores[pick]
bbox_scores_pick = ori_bbox_scores[pick]
#final_result = pool.map(filter_result, zip(scores_pick, merge_ids, preds_pick, pick, bbox_scores_pick))
#final_result = [item for item in final_result if item is not None]
for j in range(len(pick)):
ids = np.arange(17)
max_score = torch.max(scores_pick[j, ids, 0])
if max_score < scoreThreds:
continue
# Merge poses
merge_id = merge_ids[j]
merge_pose, merge_score = p_merge_fast(
preds_pick[j], ori_pose_preds[merge_id], ori_pose_scores[merge_id], ref_dists[pick[j]])
max_score = torch.max(merge_score[ids])
if max_score < scoreThreds:
continue
xmax = max(merge_pose[:, 0])
xmin = min(merge_pose[:, 0])
ymax = max(merge_pose[:, 1])
ymin = min(merge_pose[:, 1])
if (1.5 ** 2 * (xmax - xmin) * (ymax - ymin) < areaThres):
continue
final_result.append({
'keypoints': merge_pose - 0.3,
'kp_score': merge_score,
'proposal_score': torch.mean(merge_score) + bbox_scores_pick[j] + 1.25 * max(merge_score)
})
return final_result
def filter_result(args):
score_pick, merge_id, pred_pick, pick, bbox_score_pick = args
global ori_pose_preds, ori_pose_scores, ref_dists
ids = np.arange(17)
max_score = torch.max(score_pick[ids, 0])
if max_score < scoreThreds:
return None
# Merge poses
merge_pose, merge_score = p_merge_fast(
pred_pick, ori_pose_preds[merge_id], ori_pose_scores[merge_id], ref_dists[pick])
max_score = torch.max(merge_score[ids])
if max_score < scoreThreds:
return None
xmax = max(merge_pose[:, 0])
xmin = min(merge_pose[:, 0])
ymax = max(merge_pose[:, 1])
ymin = min(merge_pose[:, 1])
if (1.5 ** 2 * (xmax - xmin) * (ymax - ymin) < 40 * 40.5):
return None
return {
'keypoints': merge_pose - 0.3,
'kp_score': merge_score,
'proposal_score': torch.mean(merge_score) + bbox_score_pick + 1.25 * max(merge_score)
}
def p_merge(ref_pose, cluster_preds, cluster_scores, ref_dist):
'''
Score-weighted pose merging
INPUT:
ref_pose: reference pose -- [17, 2]
cluster_preds: redundant poses -- [n, 17, 2]
cluster_scores: redundant poses score -- [n, 17, 1]
ref_dist: reference scale -- Constant
OUTPUT:
final_pose: merged pose -- [17, 2]
final_score: merged score -- [17]
'''
dist = torch.sqrt(torch.sum(
torch.pow(ref_pose[np.newaxis, :] - cluster_preds, 2),
dim=2
)) # [n, 17]
kp_num = 17
ref_dist = min(ref_dist, 15)
mask = (dist <= ref_dist)
final_pose = torch.zeros(kp_num, 2)
final_score = torch.zeros(kp_num)
if cluster_preds.dim() == 2:
cluster_preds.unsqueeze_(0)
cluster_scores.unsqueeze_(0)
if mask.dim() == 1:
mask.unsqueeze_(0)
for i in range(kp_num):
cluster_joint_scores = cluster_scores[:, i][mask[:, i]] # [k, 1]
cluster_joint_location = cluster_preds[:, i, :][mask[:, i].unsqueeze(
-1).repeat(1, 2)].view((torch.sum(mask[:, i]), -1))
# Get an normalized score
normed_scores = cluster_joint_scores / torch.sum(cluster_joint_scores)
# Merge poses by a weighted sum
final_pose[i, 0] = torch.dot(cluster_joint_location[:, 0], normed_scores.squeeze(-1))
final_pose[i, 1] = torch.dot(cluster_joint_location[:, 1], normed_scores.squeeze(-1))
final_score[i] = torch.dot(cluster_joint_scores.transpose(0, 1).squeeze(0), normed_scores.squeeze(-1))
return final_pose, final_score
def p_merge_fast(ref_pose, cluster_preds, cluster_scores, ref_dist):
'''
Score-weighted pose merging
INPUT:
ref_pose: reference pose -- [17, 2]
cluster_preds: redundant poses -- [n, 17, 2]
cluster_scores: redundant poses score -- [n, 17, 1]
ref_dist: reference scale -- Constant
OUTPUT:
final_pose: merged pose -- [17, 2]
final_score: merged score -- [17]
'''
dist = torch.sqrt(torch.sum(
torch.pow(ref_pose[np.newaxis, :] - cluster_preds, 2),
dim=2
))
kp_num = 17
ref_dist = min(ref_dist, 15)
mask = (dist <= ref_dist)
final_pose = torch.zeros(kp_num, 2)
final_score = torch.zeros(kp_num)
if cluster_preds.dim() == 2:
cluster_preds.unsqueeze_(0)
cluster_scores.unsqueeze_(0)
if mask.dim() == 1:
mask.unsqueeze_(0)
# Weighted Merge
masked_scores = cluster_scores.mul(mask.float().unsqueeze(-1))
normed_scores = masked_scores / torch.sum(masked_scores, dim=0)
final_pose = torch.mul(cluster_preds, normed_scores.repeat(1, 1, 2)).sum(dim=0)
final_score = torch.mul(masked_scores, normed_scores).sum(dim=0)
return final_pose, final_score
def get_parametric_distance(i, all_preds, keypoint_scores, ref_dist):
pick_preds = all_preds[i]
pred_scores = keypoint_scores[i]
dist = torch.sqrt(torch.sum(
torch.pow(pick_preds[np.newaxis, :] - all_preds, 2),
dim=2
))
mask = (dist <= 1)
# Define a keypoints distance
score_dists = torch.zeros(all_preds.shape[0], 17)
keypoint_scores.squeeze_()
if keypoint_scores.dim() == 1:
keypoint_scores.unsqueeze_(0)
if pred_scores.dim() == 1:
pred_scores.unsqueeze_(1)
# The predicted scores are repeated up to do broadcast
pred_scores = pred_scores.repeat(1, all_preds.shape[0]).transpose(0, 1)
score_dists[mask] = torch.tanh(pred_scores[mask] / delta1) * torch.tanh(keypoint_scores[mask] / delta1)
point_dist = torch.exp((-1) * dist / delta2)
final_dist = torch.sum(score_dists, dim=1) + mu * torch.sum(point_dist, dim=1)
return final_dist
def PCK_match(pick_pred, all_preds, ref_dist):
dist = torch.sqrt(torch.sum(
torch.pow(pick_pred[np.newaxis, :] - all_preds, 2),
dim=2
))
ref_dist = min(ref_dist, 7)
num_match_keypoints = torch.sum(
dist / ref_dist <= 1,
dim=1
)
return num_match_keypoints
def write_json(all_results, outputpath, for_eval=False):
'''
all_result: result dict of predictions
outputpath: output directory
'''
form = opt.format
json_results = []
json_results_cmu = {}
for im_res in all_results:
im_name = im_res['imgname']
for human in im_res['result']:
keypoints = []
result = {}
if for_eval:
result['image_id'] = int(im_name.split('/')[-1].split('.')[0].split('_')[-1])
else:
result['image_id'] = im_name.split('/')[-1]
result['category_id'] = 1
kp_preds = human['keypoints']
kp_scores = human['kp_score']
pro_scores = human['proposal_score']
for n in range(kp_scores.shape[0]):
keypoints.append(float(kp_preds[n, 0]))
keypoints.append(float(kp_preds[n, 1]))
keypoints.append(float(kp_scores[n]))
result['keypoints'] = keypoints
result['score'] = float(pro_scores)
if form == 'cmu': # the form of CMU-Pose
if result['image_id'] not in json_results_cmu.keys():
json_results_cmu[result['image_id']]={}
json_results_cmu[result['image_id']]['version']="AlphaPose v0.2"
json_results_cmu[result['image_id']]['bodies']=[]
tmp={'joints':[]}
result['keypoints'].append((result['keypoints'][15]+result['keypoints'][18])/2)
result['keypoints'].append((result['keypoints'][16]+result['keypoints'][19])/2)
result['keypoints'].append((result['keypoints'][17]+result['keypoints'][20])/2)
indexarr=[0,51,18,24,30,15,21,27,36,42,48,33,39,45,6,3,12,9]
for i in indexarr:
tmp['joints'].append(result['keypoints'][i])
tmp['joints'].append(result['keypoints'][i+1])
tmp['joints'].append(result['keypoints'][i+2])
json_results_cmu[result['image_id']]['bodies'].append(tmp)
elif form == 'open': # the form of OpenPose
if result['image_id'] not in json_results_cmu.keys():
json_results_cmu[result['image_id']]={}
json_results_cmu[result['image_id']]['version']="AlphaPose v0.2"
json_results_cmu[result['image_id']]['people']=[]
tmp={'pose_keypoints_2d':[]}
result['keypoints'].append((result['keypoints'][15]+result['keypoints'][18])/2)
result['keypoints'].append((result['keypoints'][16]+result['keypoints'][19])/2)
result['keypoints'].append((result['keypoints'][17]+result['keypoints'][20])/2)
indexarr=[0,51,18,24,30,15,21,27,36,42,48,33,39,45,6,3,12,9]
for i in indexarr:
tmp['pose_keypoints_2d'].append(result['keypoints'][i])
tmp['pose_keypoints_2d'].append(result['keypoints'][i+1])
tmp['pose_keypoints_2d'].append(result['keypoints'][i+2])
json_results_cmu[result['image_id']]['people'].append(tmp)
else:
json_results.append(result)
if form == 'cmu': # the form of CMU-Pose
with open(os.path.join(outputpath,'alphapose-results.json'), 'w') as json_file:
json_file.write(json.dumps(json_results_cmu))
if not os.path.exists(os.path.join(outputpath,'sep-json')):
os.mkdir(os.path.join(outputpath,'sep-json'))
for name in json_results_cmu.keys():
with open(os.path.join(outputpath,'sep-json',name.split('.')[0]+'.json'),'w') as json_file:
json_file.write(json.dumps(json_results_cmu[name]))
elif form == 'open': # the form of OpenPose
with open(os.path.join(outputpath,'alphapose-results.json'), 'w') as json_file:
json_file.write(json.dumps(json_results_cmu))
if not os.path.exists(os.path.join(outputpath,'sep-json')):
os.mkdir(os.path.join(outputpath,'sep-json'))
for name in json_results_cmu.keys():
with open(os.path.join(outputpath,'sep-json',name.split('.')[0]+'.json'),'w') as json_file:
json_file.write(json.dumps(json_results_cmu[name]))
else:
with open(os.path.join(outputpath,'alphapose-results.json'), 'w') as json_file:
json_file.write(json.dumps(json_results))
|