File size: 7,289 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# -----------------------------------------------------
# Copyright (c) Shanghai Jiao Tong University. All rights reserved.
# Written by Jiefeng Li (jeff.lee.sjtu@gmail.com)
# -----------------------------------------------------

import numpy as np
import torch
from scipy.optimize import linear_sum_assignment

sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89])


def candidate_reselect(bboxes, bboxes_scores, pose_preds):
    '''
    Grouping
    '''
    # Group same keypointns together
    kp_groups = grouping(bboxes, bboxes_scores, pose_preds)

    '''
    Re-select
    '''

    # Generate Matrix
    human_num = len(pose_preds.keys())
    costMatrix = []
    for k in range(17):
        kp_group = kp_groups[k]
        joint_num = len(kp_group.keys())

        costMatrix.append(np.zeros((human_num, joint_num)))

    group_size = {k: {} for k in range(17)}

    for n, person in pose_preds.items():
        h_id = n
        assert 0 <= h_id < human_num

        for k in range(17):
            g_id = person['group_id'][k]
            if g_id is not None:
                if g_id not in group_size[k].keys():
                    group_size[k][g_id] = 0

                group_size[k][g_id] += 1

                g_id = int(g_id) - 1
                _, _, score = person[k][0]
                h_score = person['human_score']

                if score < 0.05:
                    costMatrix[k][h_id][g_id] = 0
                else:
                    costMatrix[k][h_id][g_id] = -(h_score * score)

    pose_preds = matching(pose_preds, costMatrix, kp_groups)

    # To JSON
    final_result = []

    for n, person in pose_preds.items():

        final_pose = torch.zeros(17, 2)
        final_score = torch.zeros(17, 1)

        max_score = 0
        mean_score = 0

        xmax, xmin = 0, 1e5
        ymax, ymin = 0, 1e5

        for k in range(17):
            assert len(person[k]) > 0
            x, y, s = person[k][0]

            xmax = max(xmax, x)
            xmin = min(xmin, x)
            ymax = max(ymax, y)
            ymin = min(ymin, y)

            final_pose[k][0] = x.item() - 0.3
            final_pose[k][1] = y.item() - 0.3
            final_score[k] = s.item()
            mean_score += (s.item() / 17)
            max_score = max(max_score, s.item())

        if torch.max(final_score).item() < 0.1:
            continue

        if (1.5 ** 2 * (xmax - xmin) * (ymax - ymin) < 40 * 40):
            continue

        final_result.append({
            'keypoints': final_pose,
            'kp_score': final_score,
            'proposal_score': mean_score + max_score + person['bbox_score']
        })

    return final_result


def grouping(bboxes, bboxes_scores, pose_preds):
    kp_groups = {}
    for k in range(17):
        kp_groups[k] = {}

    ids = np.zeros(17)

    for n, person in pose_preds.items():
        pose_preds[n]['bbox'] = bboxes[n]
        pose_preds[n]['bbox_score'] = bboxes_scores[n]
        pose_preds[n]['group_id'] = {}
        s = 0

        for k in range(17):
            pose_preds[n]['group_id'][k] = None
            pose_preds[n][k] = np.array(pose_preds[n][k])
            assert len(pose_preds[n][k]) > 0
            s += pose_preds[n][k][0][-1]

        s = s / 17

        pose_preds[n]['human_score'] = s

        for k in range(17):
            latest_id = ids[k]
            kp_group = kp_groups[k]

            assert len(person[k]) > 0
            x0, y0, s0 = person[k][0]
            if s0 < 0.05:
                continue

            for g_id, g in kp_group.items():
                x_c, y_c = kp_group[g_id]['group_center']

                '''
                Get Average Box Size
                '''
                group_area = kp_group[g_id]['group_area']
                group_area = group_area[0] * group_area[1] / (group_area[2] ** 2)

                '''
                Groupingn Criterion
                '''
                # Joint Group
                dist = np.sqrt(
                    ((x_c - x0) ** 2 + (y_c - y0) ** 2) / group_area)

                if dist <= 0.1 * sigmas[k]:  # Small Distance
                    if s0 >= 0.3:
                        kp_group[g_id]['kp_list'][0] += x0 * s0
                        kp_group[g_id]['kp_list'][1] += y0 * s0
                        kp_group[g_id]['kp_list'][2] += s0

                        kp_group[g_id]['group_area'][0] += (person['bbox'][2] - person['bbox'][0]) * person['human_score']
                        kp_group[g_id]['group_area'][1] += (person['bbox'][3] - person['bbox'][1]) * person['human_score']
                        kp_group[g_id]['group_area'][2] += person['human_score']

                        x_c = kp_group[g_id]['kp_list'][0] / kp_group[g_id]['kp_list'][2]
                        y_c = kp_group[g_id]['kp_list'][1] / kp_group[g_id]['kp_list'][2]
                        kp_group[g_id]['group_center'] = (x_c, y_c)

                    pose_preds[n]['group_id'][k] = g_id
                    break
            else:
                # A new keypoint group
                latest_id += 1
                kp_group[latest_id] = {
                    'kp_list': None,
                    'group_center': person[k][0].copy()[:2],
                    'group_area': None
                }

                x, y, s = person[k][0]
                kp_group[latest_id]['kp_list'] = np.array((x * s, y * s, s))

                # Ref Area
                ref_width = person['bbox'][2] - person['bbox'][0]
                ref_height = person['bbox'][3] - person['bbox'][1]
                ref_score = person['human_score']
                kp_group[latest_id]['group_area'] = np.array((
                    ref_width * ref_score, ref_height * ref_score, ref_score))

                pose_preds[n]['group_id'][k] = latest_id
                ids[k] = latest_id
    return kp_groups


def matching(pose_preds, matrix, kp_groups):
    index = []
    for k in range(17):
        human_ind, joint_ind = linear_sum_assignment(matrix[k])
        # human_ind, joint_ind = greedy_matching(matrix[k])

        index.append(list(zip(human_ind, joint_ind)))

    for n, person in pose_preds.items():
        for k in range(17):
            g_id = person['group_id'][k]
            if g_id is not None:
                g_id = int(g_id) - 1
                h_id = n

                x, y, s = pose_preds[n][k][0]
                if ((h_id, g_id) not in index[k]) and len(pose_preds[n][k]) > 1:
                    pose_preds[n][k] = np.delete(pose_preds[n][k], 0, 0)
                elif ((h_id, g_id) not in index[k]) and len(person[k]) == 1:
                    x, y, _ = pose_preds[n][k][0]
                    pose_preds[n][k][0] = (x, y, 1e-5)
                    pass
                elif ((h_id, g_id) in index[k]):
                    x, y = kp_groups[k][g_id + 1]['group_center']
                    s = pose_preds[n][k][0][2]
                    pose_preds[n][k][0] = (x, y, s)

    return pose_preds


def greedy_matching(matrix):
    num_human, num_joint = matrix.shape

    if num_joint <= num_human or True:
        human_ind = np.argmin(matrix, axis=0)
        joint_ind = np.arange(num_joint)
    else:
        pass

    return human_ind.tolist(), joint_ind.tolist()