Spaces:
Running
Running
File size: 12,424 Bytes
95f8bbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import numpy as np
import matplotlib.pyplot as plt
import pickle
import torch
import torch.nn.functional as F
from scipy.spatial.transform import Rotation
from scipy.ndimage import binary_erosion, binary_dilation
import os
import json
def euler_angles_smooth(XYZ_euler_angles):
if XYZ_euler_angles.ndim == 1:
XYZ_euler_angles = XYZ_euler_angles[:, np.newaxis]
for i in range(XYZ_euler_angles.shape[0]-1):
for j in range(XYZ_euler_angles.shape[1]):
# smooth
if XYZ_euler_angles[i+1, j] - XYZ_euler_angles[i, j] > 180:
XYZ_euler_angles[i+1:, j] = XYZ_euler_angles[i+1:, j] - 360
elif XYZ_euler_angles[i+1, j] - XYZ_euler_angles[i, j] < -180:
XYZ_euler_angles[i+1:, j] = XYZ_euler_angles[i+1:, j] + 360
return np.squeeze(XYZ_euler_angles)
def xyz2euler_body(xyz, xyz_body_frame, X_dir=1.0, Y_dir=1.0):
'''
xyz: Coordinates from 3D human pose estimation. Each dimension: (frame, 3, xyz)
xyz_body_frame: Coordinates of body frame. Used to calculate the Y direction rotation of body.
X_dir: -1.0 for arm and body.
Y_dir: -1.0 for body and head.
'''
# swap y and z to align the coordinate in the mine-imator
xyz[:, :, [1, 2]] = xyz[:, :, [2, 1]]
xyz[:, :, 0] = -xyz[:, :, 0]
xyz_body_frame[:, :, [1, 2]] = xyz_body_frame[:, :, [2, 1]]
xyz_body_frame[:, :, 0] = -xyz_body_frame[:, :, 0]
p0, p1, p2 = torch.unbind(xyz, dim=1)
p1_, p4_, p14_, p11_ = torch.unbind(xyz_body_frame, dim=1)
# solve the cosine pose matrix
Y = (p0 - p1) * Y_dir
arm = p2 - p1
Y = F.normalize(Y, dim=1)
X = F.normalize(p11_ + p4_ - p1_ - p14_, dim=1)
# X = F.normalize(torch.cross(X_dir*arm, Y), dim=1) # TODO smooth
Z = F.normalize(torch.cross(X, Y), dim=1)
cos_pose_matrix = torch.stack([X, Y, Z], dim=2)
r = Rotation.from_matrix(cos_pose_matrix)
YXZ_euler_angles = r.as_euler("YXZ", degrees=True)
# bend
bend = -(Y * F.normalize(arm, dim=1)).sum(dim=1) * Y_dir
bend = torch.rad2deg(torch.acos(bend))
# swap xyz
YXZ_euler_angles[:, [0, 1, 2]] = YXZ_euler_angles[:, [1, 0, 2]]
XYZ_euler_angles = YXZ_euler_angles
# arm cos_pose_matrix
Y_arm = F.normalize(arm, dim=1)
X_arm = X
Z_arm = F.normalize(torch.cross(X_arm, Y_arm), dim=1)
cos_pose_matrix_arm = torch.stack([X_arm, Y_arm, Z_arm], dim=2)
# avoid abrupt changes in angle
XYZ_euler_angles = euler_angles_smooth(XYZ_euler_angles)
bend = euler_angles_smooth(bend.numpy())
return XYZ_euler_angles, bend, cos_pose_matrix_arm
def xyz2euler_relative(xyz, cos_body, X_dir=1.0, Y_dir=1.0, head=False, leg=False, euler_body=None):
'''
xyz: Coordinates from 3D human pose estimation. Each dimension: (frame, 3, xyz)
X_dir: -1.0 for arm and body.
Y_dir: -1.0 for body and head.
'''
# swap y and z to align the coordinate in the mine-imator
xyz[:, :, [1, 2]] = xyz[:, :, [2, 1]]
xyz[:, :, 0] = -xyz[:, :, 0]
p0, p1, p2 = torch.unbind(xyz, dim=1)
# solve the cosine pose matrix
Y = (p0 - p1) * Y_dir
arm = p2 - p1
Y = F.normalize(Y, dim=1)
X = F.normalize(torch.cross(X_dir*arm, Y), dim=1) # TODO smooth
Z = F.normalize(torch.cross(X, Y), dim=1)
cos_pose_matrix = torch.stack([X, Y, Z], dim=2)
if head == True:
Y_arm = F.normalize(arm, dim=1)
X_arm = X
Z_arm = F.normalize(torch.cross(X_arm, Y_arm), dim=1)
cos_pose_matrix = torch.stack([X_arm, Y_arm, Z_arm], dim=2)
# relative to the body rotation Y
if leg == True:
euler_body_Y = euler_body * 0
euler_body_Y[:, 0:1] = euler_body[:, 1:2]
r_body_Y = Rotation.from_euler("YXZ", euler_body_Y, degrees=True)
cos_body_Y = torch.from_numpy(r_body_Y.as_matrix())
# relative to the body
cos_relative = cos_body if leg == False else cos_body_Y.float()
cos_pose_matrix = cos_relative.permute(0, 2, 1) @ cos_pose_matrix
r = Rotation.from_matrix(cos_pose_matrix)
YXZ_euler_angles = r.as_euler("YXZ", degrees=True)
# bend
bend = -(Y * F.normalize(arm, dim=1)).sum(dim=1) * Y_dir
bend = torch.rad2deg(torch.acos(bend))
# if head == True:
# bend = bend * 0.5
# swap xyz
YXZ_euler_angles[:, [0, 1, 2]] = YXZ_euler_angles[:, [1, 0, 2]]
XYZ_euler_angles = YXZ_euler_angles
# avoid abrupt changes in angle
XYZ_euler_angles = euler_angles_smooth(XYZ_euler_angles)
bend = euler_angles_smooth(bend.numpy())
return XYZ_euler_angles, bend
def calculate_body_offset(euler_body, euler_right_leg, bend_right_leg, euler_left_leg, bend_left_leg, length_leg=[6, 6], prior=False):
'''
Calculate the offset of the body to make the movement more realistic.
First, determine the foot positions of both legs based on the actual
effect of Euler angle rotation in Mine-imator. Then, determine which
leg is currently touching the ground and fix the grounded leg. This
allows the calculation of the body offset.
'''
def calculate_leg_coordinates(r_body_Y, euler_leg, bend_leg, length_leg, right=True):
YXZ_euler_leg = euler_leg[:, [1, 0, 2]]
r1 = Rotation.from_euler("YXZ", YXZ_euler_leg, degrees=True)
m1 = r1.as_matrix()
X1 = m1[:, :, 0] # direction
Y1 = m1[:, :, 1] # vector to be rotated
r2 = Rotation.from_rotvec(X1*bend_leg[:, np.newaxis], degrees=True)
Y2 = r2.apply(Y1) # reconstruct the arm vector
coordinates = -(Y1 * length_leg[0] + Y2 * length_leg[1])
coordinates[:, 0] = coordinates[:, 0] - 2
coordinates = r_body_Y.apply(coordinates)
return coordinates
# calculate the endpoint coordinates of two legs
euler_body_Y = euler_body * 0
euler_body_Y[:, 0:1] = euler_body[:, 1:2]
r_body_Y = Rotation.from_euler("YXZ", euler_body_Y, degrees=True)
right_coordinates = calculate_leg_coordinates(r_body_Y, euler_right_leg, bend_right_leg, length_leg)
left_coordinates = calculate_leg_coordinates(r_body_Y, euler_left_leg, bend_left_leg, length_leg)
# stack, 0: right, 1: left
coordinates = np.stack([right_coordinates, left_coordinates], axis=1)
# determine which leg grounded, 0: right, 1: left
grounded_flag = (right_coordinates[:, 1] > left_coordinates[:, 1])*1
# prior knowledge: The more bended legs are not grounded
if prior == True:
grounded_flag_left = (bend_right_leg - bend_left_leg) > 30
grounded_flag_right = (bend_left_leg - bend_right_leg) > 30
grounded_flag += grounded_flag_left*1
grounded_flag *= (1 - grounded_flag_right)*1
# smoothing
grounded_flag = binary_erosion(grounded_flag, structure=np.ones(7))*1
grounded_flag = binary_dilation(grounded_flag, structure=np.ones(7))*1
body_POS = np.zeros_like(right_coordinates)
# POS_Y
ind = np.array(range(right_coordinates.shape[0]))
body_POS[:, 1] = -coordinates[ind, grounded_flag, 1]
# extract the X, Z coordinates of grounded leg in time t_1
X_t1 = coordinates[ind[:-1], grounded_flag[:-1], 0]
Z_t1 = coordinates[ind[:-1], grounded_flag[:-1], 2]
# extract the X, Z coordinates of grounded leg in time t_2
# note that the split of grounded_flag not changed
X_t2 = coordinates[ind[1:], grounded_flag[:-1], 0]
Z_t2 = coordinates[ind[1:], grounded_flag[:-1], 2]
# calculate the relative displacement between two frames
X_relative = X_t2 - X_t1
Z_relative = Z_t2 - Z_t1
# calculate the absolute displacement
X_abs = np.cumsum(X_relative)
Z_abs = np.cumsum(Z_relative)
body_POS[1:, 0] = -X_abs
body_POS[1:, 2] = -Z_abs
return body_POS
def add_keyframes(data, length, part_name, euler, bend, not_body=True, not_head=True, body_steve=False, body_POS=None):
for i in range(length):
if not_head:
keyframes_dict = {
"position": i,
"part_name": part_name,
"values": {
"ROT_X": float(euler[i][0]),
"ROT_Y": float(euler[i][2]), # Y, Z args in mine-imator miframes is exchanged. Maybe a bug.
"ROT_Z": float(euler[i][1]*not_body),
"BEND_ANGLE_X": float(bend[i])
}
}
else: # no bend
keyframes_dict = {
"position": i,
"part_name": part_name,
"values": {
"ROT_X": float(euler[i][0]),
"ROT_Y": float(euler[i][2]),
"ROT_Z": float(euler[i][1]),
}
}
if body_steve == True:
keyframes_dict = {
"position": i,
"values": {
"POS_X": float(body_POS[i][0]),
"POS_Y": float(body_POS[i][2]),
"POS_Z": float(body_POS[i][1]),
"ROT_Z": float(euler[i][1])
}
}
data["keyframes"].append(keyframes_dict)
print(f"add_key_frames: {part_name}")
def hpe2keyframes(HPE_filename, FPS_mine_imator, keyframes_filename, prior=True):
# read data
with open(HPE_filename, 'rb') as file:
data = np.load(file)
print(f"open file: {HPE_filename}")
xyz = data.copy()
length = xyz.shape[0]
# extract data from each body part
xyz_right_leg = torch.from_numpy(xyz[:, 1:4, :])
xyz_right_arm = torch.from_numpy(xyz[:, 14:17, :])
xyz_left_leg = torch.from_numpy(xyz[:, 4:7, :])
xyz_left_arm = torch.from_numpy(xyz[:, 11:14, :])
xyz_body = torch.from_numpy(xyz[:, [0, 7, 8], :])
xyz_body_frame = torch.from_numpy(xyz[:, [1, 4, 14, 11], :])
xyz_head = torch.from_numpy(xyz[:, [8, 9, 10], :])
# calculate the absolute euler angles of body
euler_body, bend_body, cos_pos_matrix = xyz2euler_body(xyz_body, xyz_body_frame, X_dir=-1, Y_dir=-1)
# calculate the relative euler angles of arm and head with respect to the body ROT_Y
euler_right_leg, bend_right_leg = xyz2euler_relative(xyz_right_leg, cos_pos_matrix, leg=True, euler_body=euler_body)
euler_left_leg, bend_left_leg = xyz2euler_relative(xyz_left_leg, cos_pos_matrix, leg=True, euler_body=euler_body)
# calculate the relative euler angles of arm and head with respect to the upper body
euler_right_arm, bend_right_arm = xyz2euler_relative(xyz_right_arm, cos_pos_matrix, X_dir=-1)
euler_left_arm, bend_left_arm = xyz2euler_relative(xyz_left_arm, cos_pos_matrix, X_dir=-1)
euler_head, bend_head = xyz2euler_relative(xyz_head, cos_pos_matrix, Y_dir=-1, head=True)
# create json format data
data = {
"format": 34,
"created_in": "2.0.0", # mine-imator version
"is_model": True,
"tempo": FPS_mine_imator, # FPS
"length": length, # keyframes length
"keyframes": [
],
"templates": [],
"timelines": [],
"resources": []
}
# relative offset makes the model more realistic
# caculate the relative offset based on Euler angle and bending angle
body_POS = calculate_body_offset(euler_body, euler_right_leg, bend_right_leg, euler_left_leg, bend_left_leg, prior=prior)
add_keyframes(data, length, "left_leg", euler_left_leg, bend_left_leg)
add_keyframes(data, length, "right_leg", euler_right_leg, bend_right_leg)
add_keyframes(data, length, "left_arm", euler_left_arm, bend_left_arm)
add_keyframes(data, length, "right_arm", euler_right_arm, bend_right_arm)
add_keyframes(data, length, "body", euler_body, bend_body, not_body=False)
add_keyframes(data, length, "head", euler_head, bend_head, not_head=False)
add_keyframes(data, length, "abc", euler_body, bend_body, body_steve=True, body_POS=body_POS) # TODO
# save json
with open(keyframes_filename, "w") as file:
json.dump(data, file, indent=4)
print(f"keyframes file saves successfully, file path: {os.path.abspath(keyframes_filename)}")
if __name__ == '__main__':
# config
HPE_filename = "outputs/test_3d_output_malaoshi_2-00_2-30_postprocess.npy"
FPS_mine_imator = 30
keyframes_filename = "steve_malaoshi2.miframes"
prior = True
hpe2keyframes(HPE_filename, FPS_mine_imator, keyframes_filename, prior=prior)
print("Done!")
|