File size: 2,523 Bytes
8408bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import gradio as gr
import plotly.express as px
from openai import OpenAI

# Configura el cliente de OpenAI con la API key directamente
client = OpenAI(api_key="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")

# ID de tu asistente
assistant_id = "asst_0hq3iRy6LX0YLZP0QVzg17fT"

def random_plot():
    df = px.data.iris()
    fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species",
                    size='petal_length', hover_data=['petal_width'])
    return fig

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def add_message(history, message):
    if message["text"] is not None:
        history.append((message["text"], None))
    return history, gr.MultimodalTextbox(value=None, interactive=False)

def bot(history):
    last_message = history[-1][0] if history else "Hola"
    
    # Crear un nuevo hilo para la conversación
    thread = client.beta.threads.create()

    # Agregar el mensaje del usuario al hilo
    client.beta.threads.messages.create(
        thread_id=thread.id,
        role="user",
        content=last_message
    )

    # Ejecutar el asistente
    run = client.beta.threads.runs.create(
        thread_id=thread.id,
        assistant_id=assistant_id
    )

    # Esperar a que el asistente complete la tarea
    while run.status != "completed":
        run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id)

    # Obtener los mensajes del hilo
    messages = client.beta.threads.messages.list(thread_id=thread.id)

    # Obtener la última respuesta del asistente
    for message in messages.data:
        if message.role == "assistant":
            bot_response = message.content[0].text.value
            break

    history[-1] = (history[-1][0], bot_response)
    return history

fig = random_plot()

with gr.Blocks(fill_height=True) as demo:
    chatbot = gr.Chatbot(
        elem_id="chatbot",
        bubble_full_width=False,
        scale=1,
    )
    chat_input = gr.MultimodalTextbox(interactive=True,
                                      file_count="multiple",
                                      placeholder="Enter message or upload file...", show_label=False)
    chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
    bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
    bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
    chatbot.like(print_like_dislike, None, None)

demo.queue()
demo.launch(share=True)