File size: 16,728 Bytes
42d6a0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# -*- coding: utf-8 -*-
"""
Created on Thu May  4 11:19:59 2023

@author: gita
"""

import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
import pandas as pd
import json
import os
import gc
from distutils.dir_util import copy_tree
import argparse
import flair
from flair.embeddings import TokenEmbeddings, WordEmbeddings, StackedEmbeddings, TransformerWordEmbeddings
from torch import nn, tanh, sigmoid, relu, FloatTensor, rand, stack, optim, cuda, softmax, save, device, tensor, int64, no_grad, concat
from flair.data import Sentence

default_path = os.path.dirname(os.path.abspath(__file__))
tagger_document = 0
embeddings = 0
json_data = 0
train_loader = 0
val_loader = 0
cnn = 0
optimizer = 0
criterion = 0
device = 0


class MyDataset(Dataset):
    def __init__(self, len_c1=7, len_c2=5, len_c3=11):
        global json_data
        
        def create_vector(c1,sentence):
            #print("Hola mundo")
            if len(c1): c1 = torch.cat([c1,sentence], dim=0)
            else: c1 = sentence
            return c1
        
        def fix_tensor(tensor, size):
            
            
            while tensor.shape[2] < size:
                tensor = torch.cat([tensor,torch.zeros(1,1,1,1024)], dim=2)
                
            tensor = tensor[:,:,:size,:]
            return tensor

        tensor_temp = torch.Tensor(json_data['flat_emb'])

        data = tensor_temp.reshape((tensor_temp.shape[0],1,-1,1024))

        
        self.targets =  create_vector(self.targets,torch.Tensor(json_data['relation']))
        
        

        for n_sen in range(tensor_temp.shape[0]):


            tensor_temp = data[n_sen,0,:json_data['h_pos'][n_sen][0],:].reshape((1, 1,-1,1024))
            self.c1 = create_vector(self.c1,fix_tensor(tensor_temp, len_c1))
            
            tensor_temp = data[n_sen,0,json_data['h_pos'][n_sen][0]:json_data['h_pos'][n_sen][-1]+1,:].mean(dim=0).reshape((1,1024))
            self.h1 = create_vector(self.h1,tensor_temp)
            
            tensor_temp = data[n_sen,0,json_data['h_pos'][n_sen][-1]+1:json_data['t_pos'][n_sen][0],:].reshape((1,1,-1,1024))
            self.c2 = create_vector(self.c2,fix_tensor(tensor_temp, len_c2))
            
            tensor_temp = data[n_sen,0,json_data['t_pos'][n_sen][0]:json_data['t_pos'][n_sen][-1]+1,:].mean(dim=0).reshape((1,1024))
            self.h2 = create_vector(self.h2,tensor_temp)                  
            
            tensor_temp = data[n_sen,0,json_data['t_pos'][n_sen][-1]+1:,:].reshape((1, 1,-1,1024))
            self.c3 = create_vector(self.c3,fix_tensor(tensor_temp, len_c3))
             
        del data
        del tensor_temp
        del json_data
        gc.collect()
        self.targets = self.targets.to(torch.int64)
        
    def __len__(self):
        return len(self.targets)

    def __getitem__(self, index):
        c1x = self.c1[index]
        h1x = self.h1[index]
        c2x = self.c2[index]
        h2x = self.h2[index]
        c3x = self.c3[index]
        y = self.targets[index]
        return c1x,h1x,c2x,h2x,c3x, y
    
    
def update_step(c1, h1,c2,h2,c3, label):
    global cnn
    global optimizer
    global criterion
    prediction = cnn(c1, h1,c2,h2,c3)
    optimizer.zero_grad()
    loss = criterion(prediction, label)
    loss.backward()
    optimizer.step()
    acc = (nn.Softmax(dim=1)(prediction).detach().argmax(dim=1) == label).type(torch.float).sum().item()
    #print(acc)
    return loss.item(), acc

def evaluate_step(c1, h1,c2,h2,c3, label):
    global cnn
    global optimizer
    global criterion
    prediction = cnn(c1, h1,c2,h2,c3)
    loss = criterion(prediction, label)
    acc = (nn.Softmax(dim=1)(prediction).detach().argmax(dim=1) == label).type(torch.float).sum().item()
    return loss.item(), acc

def train_one_epoch(epoch):    
    global train_loader
    global val_loader
    global device
    if (device == torch.device('cuda:0')): cnn.cuda()
    train_loss, valid_loss, acc_train, acc_valid = 0.0, 0.0, 0.0, 0.0    
    for batch_idx, (c1, h1,c2,h2,c3, targets) in enumerate(train_loader):
        train_loss_temp, acc_train_temp = update_step(c1.to(device), h1.to(device),c2.to(device),h2.to(device),c3.to(device), targets.to(device))  
        train_loss += train_loss_temp
        acc_train += acc_train_temp
    for batch_idx, (c1, h1,c2,h2,c3, targets) in enumerate(val_loader):
        valid_loss_temp, acc_valid_temp = evaluate_step(c1.to(device), h1.to(device),c2.to(device),h2.to(device),c3.to(device), targets.to(device))
        valid_loss += valid_loss_temp
        acc_valid += acc_valid_temp
    # Guardar modelo si es el mejor hasta ahora
    global best_valid_loss
    if epoch % 10 == 0:
        if valid_loss < best_valid_loss:
            best_valid_loss = valid_loss
            torch.save({'epoca': epoch,
                        'model_state_dict': cnn.state_dict(),
                        'optimizer_state_dict': optimizer.state_dict(),
                        'loss': valid_loss}, 
                       '/../../RC/model/best_model.pt')
    
    return train_loss/len(train_loader.dataset), valid_loss/len(val_loader.dataset), acc_train/len(train_loader.dataset), acc_valid/len(val_loader.dataset)


def FocalLoss(input, target, gamma=0, alpha=None, size_average=True):
    from torch.autograd import Variable
    if input.dim()>2:
        input = input.view(input.size(0),input.size(1),-1)  # N,C,H,W => N,C,H*W
        input = input.transpose(1,2)    # N,C,H*W => N,H*W,C
        input = input.contiguous().view(-1,input.size(2))   # N,H*W,C => N*H*W,C
    target = target.view(-1,1)

    logpt = nn.functional.log_softmax(input)
    logpt = logpt.gather(1,target)
    logpt = logpt.view(-1)
    pt = Variable(logpt.data.exp())

    if alpha is not None:
        if alpha.type()!=input.data.type():
            alpha = alpha.type_as(input.data)
        at = alpha.gather(0,target.data.view(-1))
        logpt = logpt * Variable(at)

    loss = -1 * (1-pt)**gamma * logpt
    if size_average: return loss.mean()
    else: return loss.sum()

    
class EarlyStopping:
    def __init__(self, patience=5, min_delta=0):

        self.patience = patience
        self.min_delta = min_delta
        self.counter = 0
        self.min_validation_loss = np.inf
        self.early_stop = False

    def __call__(self, validation_loss):
        if validation_loss < self.min_validation_loss:
            self.min_validation_loss = validation_loss
            self.counter = 0
            self.early_stop = False
            
        elif validation_loss > (self.min_validation_loss + self.min_delta):
            print('Less')
            self.counter += 1
            if self.counter >= self.patience:
                self.early_stop = True
        

                


def SoftmaxModified(x):
    input_softmax = x.transpose(0,1)
    function_activation = nn.Softmax(dim=1)
    output = function_activation(input_softmax)
    output = output.transpose(0,1)
    return output


class MultiModalGMUAdapted(nn.Module):

    def __init__(self, input_size_array, hidden_size, dropoutProbability):
        """Initialize params."""
        super(MultiModalGMUAdapted, self).__init__()
        self.input_size_array = input_size_array
        self.hidden_size = hidden_size
        self.dropout = nn.Dropout(dropoutProbability)
        
        self.h_1_layer = nn.Linear(input_size_array[0], hidden_size, bias=False)
        self.h_2_layer = nn.Linear(input_size_array[1], hidden_size, bias=False)
        self.h_3_layer = nn.Linear(input_size_array[2], hidden_size, bias=False)
        self.h_4_layer = nn.Linear(input_size_array[3], hidden_size, bias=False)
        self.h_5_layer = nn.Linear(input_size_array[4], hidden_size, bias=False)
        
        self.z_1_layer = nn.Linear(input_size_array[0], hidden_size, bias=False)
        self.z_2_layer = nn.Linear(input_size_array[1], hidden_size, bias=False)
        self.z_3_layer = nn.Linear(input_size_array[2], hidden_size, bias=False)
        self.z_4_layer = nn.Linear(input_size_array[3], hidden_size, bias=False)
        self.z_5_layer = nn.Linear(input_size_array[4], hidden_size, bias=False)
        
        
        #self.z_weights = [nn.Linear(input_size_array[m], hidden_size, bias=False) for m in range(modalities_number)]
        #self.input_weights = [nn.Linear(size, hidden_size, bias=False) for size in input_size_array]

        
    def forward(self, inputModalities):
        """Propogate input through the network."""
        # h_modalities = [self.dropout(self.input_weights[i](i_mod)) for i,i_mod in enumerate(inputModalities)]
        # h_modalities = [tanh(h) for h in h_modalities]
        
        h1 = tanh(self.dropout(self.h_1_layer(inputModalities[0])))
        h2 = tanh(self.dropout(self.h_2_layer(inputModalities[1])))
        h3 = tanh(self.dropout(self.h_3_layer(inputModalities[2])))
        h4 = tanh(self.dropout(self.h_4_layer(inputModalities[3])))
        h5 = tanh(self.dropout(self.h_5_layer(inputModalities[4])))

        z1 = self.dropout(self.z_1_layer(inputModalities[0]))
        z2 = self.dropout(self.z_2_layer(inputModalities[1]))
        z3 = self.dropout(self.z_3_layer(inputModalities[2]))   
        z4 = self.dropout(self.z_4_layer(inputModalities[3]))
        z5 = self.dropout(self.z_5_layer(inputModalities[4]))
        

        #z_modalities = [self.dropout(self.z_weights[i](i_mod)) for i,i_mod in enumerate(inputModalities)]
        z_modalities = stack([z1, z2, z3, z4, z5])
        z_normalized = SoftmaxModified(z_modalities)
        final = z_normalized[0] * h1 + z_normalized[1] * h2 + z_normalized[2] * h3 + z_normalized[3] * h4 + z_normalized[4] * h5
        
    
        return final
    
class MyCNN(nn.Module):
    def __init__(self, num_classes=10, len_c1=7, len_c2=5, len_c3=11):
        super(MyCNN, self).__init__()
        shape1 = (((len_c1-2)))#-2)#//2)-2)//2)
        shape2 = (((len_c2-2)))#-2)#//2)-2)//2)
        shape3 = (((len_c3-2)))#-2)#//2)-2)//2)

        # Define convolutional layers
        self.conv_layers1 = nn.Sequential(
            nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(3,1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(shape1,1)),
        )
        
        self.conv_layers2 = nn.Sequential(
            nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(3,1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(shape2,1)),
        )
        
        self.conv_layers3 = nn.Sequential(
            nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(3,1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(shape3,1)),
        )
        

        self.multi_gmu = MultiModalGMUAdapted([1024,1024,1024,1024,1024], 1024, 0.5)

        

        

        
        self.fc_simple_layers_multi = nn.Sequential(
            nn.Linear(1024 , 256),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(256, num_classes)
        )


    def forward(self, c1, h1,c2,h2,c3):

        # Pass inputs through convolutional layers

        c1 = self.conv_layers1(c1)
        c2 = self.conv_layers2(c2)
        c3 = self.conv_layers3(c3)
        #print(c1.shape)
        
        h1 = tanh(h1)
        h2 = tanh(h2)
        #print(c1.shape)
        c1 = torch.flatten(c1, start_dim=1)
        c2 = torch.flatten(c2, start_dim=1)
        c3 = torch.flatten(c3, start_dim=1)
        #print(c1.shape)
        
        mgmu_out, mgmu_weigths = self.multi_gmu([c1,h1,c2,h2,c3]) 
      
        
        # Multi GMU
        x = self.fc_simple_layers_multi(mgmu_out)

        # Return final output
        return x
    
def define_model():
    global cnn
    global optimizer
    global criterion
    
    cnn = MyCNN()
    optimizer = torch.optim.Adam(cnn.parameters(), lr=0.001)
    criterion = lambda pred,tar: FocalLoss(input=pred,target=tar,gamma=0.7)
    
def train_model():
    max_epochs, best_valid_loss = 200, np.inf
    running_loss = np.zeros(shape=(max_epochs, 4))
    early_stopping = EarlyStopping(patience=10, min_delta=0.01)
    
    for epoch in range(max_epochs):
        running_loss[epoch] = train_one_epoch(epoch)
        early_stopping(running_loss[epoch, 1])
        print(f"Epoch {epoch} \t Train_loss = {running_loss[epoch, 0]:.4f} \t Valid_loss = {running_loss[epoch, 1]:.4f} \n\t\t\t Train_acc = {running_loss[epoch, 2]:.4f} \t Valid_acc = {running_loss[epoch, 3]:.4f}")
        if early_stopping.early_stop:
          print("We are at epoch:", epoch)
          break
      
        
def usage_cuda_rc(cuda):
    global device
    if cuda:
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        flair.device = device
        if flair.device == torch.device('cpu'): return 'Error handling GPU, CPU will be used'
        elif flair.device == torch.device('cuda:0'): return 'GPU detected, GPU will be used'
    else:
        device = torch.device('cpu')
        flair.device = device
        return 'CPU will be used'
    
    
def create_embbedings():
    global embeddings
    if (not embeddings):
        embeddings = TransformerWordEmbeddings(
                    model='xlm-roberta-large',
                    layers="-1",
                    subtoken_pooling="first", 
                    fine_tune=True,
                    use_context=True,
                )



    
def prepare_data():
    create_embbedings()
    global embeddings
    global json_data
    #Embbeb data
    
    path_files = default_path + '/../../data/RC/'
    
    rel2id_file = path_files + 'rel2id.json' 
    with open(rel2id_file, mode='r') as f: 
        rel2id = json.load(f)
        
        
    path_data = path_files+"train.txt"

    #Json to save the data
    json_data = {'flat_emb':[], 'relation':[], 'h_pos':[], 't_pos':[]}
    PADDING = np.zeros(1024)
    doc=0
    with open(path_data, mode='r', encoding='utf-8') as f:
        sentence_temp = []
        h_pos = []
        t_pos = []
        current_ent=''
        cont=0
        
        for n,line in enumerate(f.readlines()):
            if line != '\n':
                sentence_temp.append(line.split('\t')[0])
                
                if line.split('\t')[1] != 'O':
                    if current_ent == '':
                        h_pos.append(cont)
                        current_ent = line.split('\t')[1]
                        
                    elif line.split('\t')[1] == current_ent:
                        h_pos.append(cont)
                        
                    else:
                        t_pos.append(cont)
                        
                if line.split('\t')[2].replace('\n','') != '-' : relation = line.split('\t')[2].replace('\n','') 

                cont += 1
                
            else:
                
                #Embbedding sentence
                sentence = Sentence(sentence_temp)
                embeddings.embed(sentence)
                
                

                sentence_emb_flatten = []
                for tk in sentence: 
                    #flatten_embeddings    
                    if len(sentence_emb_flatten): sentence_emb_flatten = np.hstack((sentence_emb_flatten,
                                                                               tk.embedding.detach().to('cpu').numpy()))
                    else: sentence_emb_flatten = tk.embedding.detach().to('cpu').numpy()
                       
                number_padding = 100 - len(sentence)
                
                if number_padding > 0: 
                    for pd in range(number_padding):
                        sentence_emb_flatten = np.hstack((sentence_emb_flatten,
                                                          PADDING))
                       
                #Save embeddings information
                json_data['flat_emb'].append(list(sentence_emb_flatten))
                json_data['h_pos'].append(h_pos)
                json_data['t_pos'].append(t_pos)
                json_data['relation'].append(rel2id[relation])
                
                sentence_temp = []
                h_pos = []
                t_pos = []
                current_ent=''
                cont=0
    dataset = MyDataset()

    train_set_size = int(len(dataset) * 0.9)
    valid_set_size = len(dataset) - train_set_size
        
    train_dataset, val_dataset = random_split(dataset, [train_set_size, valid_set_size ])
    del dataset
    global train_loader 
    global val_loader
                                                 
    train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=64, shuffle=True)