File size: 6,028 Bytes
4bab053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# -*- coding: utf-8 -*-
"""semantic_song_search.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/17IwipreOw_cvu1TsA4WUrfzxTBBHMiVh
"""


from sentence_transformers import SentenceTransformer, util
from datasets import load_dataset
import gradio as gr
import pandas as pd
import torch
import numpy as np


"""### model all mini -- small dataset """

model_all_mini = SentenceTransformer('all-MiniLM-L12-v2')

sds = load_dataset("Santarabantoosoo/small_lyrics_dataset")

sds = pd.DataFrame(sds['train'])
# sds = pd.read_csv("data/small_dataset.csv")

sds.head()

embeddings_sds = model_all_mini.encode(sds['lyrics'])
sds['embeddings'] = list(embeddings_sds)

def relevance_scores(query_embed):
    scores = [cosine_similarity(query_embed, v2) for v2 in sds['embeddings']]
    scores = pd.Series(scores)
    return(scores)


def semantic_search(query_sentence, df = sds, return_top = False):
    query_embed = model_all_mini.encode(query_sentence)
    scores = relevance_scores(query_embed)
    df['scores'] = scores
    sorted_df = df.sort_values(by = 'scores', ascending = False)
    if return_top == False:
        sorted_df['scores'] = round(sorted_df['scores'],3)
        return sorted_df[['title','artist','scores']].head(3)
    else:
        return sorted_df.iloc[0]['lyrics'][:200]
    
def cosine_similarity(v1, v2):
    d = np.dot(v1, v2)
    cos_theta = d / (np.linalg.norm(v1) * np.linalg.norm(v2))
    return(cos_theta)

semantic_search("i'm pleased you are doing well after we left each other")

print(semantic_search("i'm pleased you are doing well after we left each other", return_top = True))

"""### model msmarco-distilbert-base-dot-prod-v3  with hf dataset (with song name)"""

query = ["i'm pleased you are doing well after we left each other"]

# hf_data = pd.read_csv('data/hf_train_with_SName.csv')

hf_data = load_dataset("Santarabantoosoo/hf_song_lyrics_with_names")

hf_data = pd.DataFrame(hf_data['train'])

hf_data['Lyric'] = hf_data['Lyric'].str.replace('\\n', "")

hf_data.head()

model_msmarco_v3 = SentenceTransformer('msmarco-distilbert-base-dot-prod-v3')

query_embedding = model_msmarco_v3.encode(query)

passage_embedding = model_msmarco_v3.encode(hf_data[:1000].Lyric)

corpus_embeddings = torch.from_numpy(passage_embedding).float().to('cuda')
corpus_embeddings = util.normalize_embeddings(corpus_embeddings)

# query_embeddings = torch.from_numpy(query_embedding).float().to('cuda')
# query_embeddings = util.normalize_embeddings(query_embeddings)
# hits = util.semantic_search(query_embeddings, corpus_embeddings, score_function=util.dot_score)

# best_match = hits[0][0]['corpus_id']

# hf_data.iloc[best_match, :]

# hf_data.iloc[best_match]['Lyric']

# hf_data.head()

def msmarco_match(query, return_top = True):
    query_embedding = model_msmarco_v3.encode(query)
    query_embeddings = torch.from_numpy(query_embedding).float().to('cuda')
    query_embeddings = util.normalize_embeddings(query_embeddings)
    hits = util.semantic_search(query_embeddings, corpus_embeddings, score_function=util.dot_score)
    top_hits = hits[0][0:3]
    
    ids = [item['corpus_id'] for item in top_hits]
    scores = pd.Series([round(item['score'],3) for item in top_hits])

    if return_top == True:
       return hf_data.iloc[ids[0]]['Lyric'][:200]
    else: 
       songs = hf_data.iloc[ids].reset_index()
       songs = pd.concat([songs, scores], axis = 1)

       songs.rename(columns={0: 'Score'},
          inplace=True)
       return songs.drop(columns = 'index')

msmarco_match(query, return_top= False)

msmarco_match(query)

msmarco_match(query, return_top = False)

"""## Fine-tuned all-mini -- small dataset"""

model_fine_tuned = SentenceTransformer('Santarabantoosoo/songs_fine-tuned-all-MiniLM-L12-v2')

embeddings_sds_ft = model_fine_tuned.encode(sds['lyrics'])
sds['embeddings_ft'] = list(embeddings_sds_ft)

def relevance_scores_ft(query_embed):
    scores = [cosine_similarity(query_embed, v2) for v2 in sds['embeddings_ft']]
    scores = pd.Series(scores)
    return(scores)


def semantic_search_ft(query_sentence, df = sds, return_top = False):
    query_embed = model_fine_tuned.encode(query_sentence)
    scores = relevance_scores(query_embed)
    df['scores'] = scores
    sorted_df = df.sort_values(by = 'scores', ascending = False)
    if return_top == False:
        sorted_df['scores'] = round(sorted_df['scores'],3)
        return sorted_df[['title','artist','scores']].head(3)
    else:
        return sorted_df.iloc[0]['lyrics'][:200]

"""## Gradio App """

def get_recom(choice, query): 
    if choice == "all-MiniLM":
        return  semantic_search(query), semantic_search(query, return_top = True) 
    elif choice == "all-MiniLM-fine-tuned":
        return  semantic_search_ft(query), semantic_search_ft(query, return_top = True) 
    else: 
        list_query = []
        query2 = query
        list_query.append([query, query2])
        return msmarco_match(list_query, return_top = False) ,  msmarco_match(list_query)
        

iface = gr.Interface(    
    title = 'Enjoy our recommendations', 
                     description = 'Do you think we can guess what you like?', 
                    fn=get_recom, 
                     inputs=  [ gr.Radio(choices = ["all-MiniLM", "all-MiniLM-fine-tuned", "msmarco"], label="Choose ur model"),
    gr.Textbox(lines=4, placeholder="Enter ur query...", label = 'Query', show_label = True)],
    outputs = [gr.Dataframe(label = "Top songs", show_label = True), 
               gr.Text(label = 'A glimpse of the closest match', show_label = True)]
    ,live = False,
    interpretation="default",
)


iface.launch(share = False, debug = True)



from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')

query_embedding = model.encode('I am so happy')
passage_embedding = model.encode(sds['embeddings'])

print("Similarity:", util.dot_score(query_embedding, passage_embedding))