Spaces:
Running
Running
File size: 11,391 Bytes
369659e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import zipfile
def unzip_content():
try:
# First try using Python's zipfile
print("Attempting to unzip content using Python...")
with zipfile.ZipFile('./content.zip', 'r') as zip_ref:
zip_ref.extractall('.')
except Exception as e:
print(f"Python unzip failed: {str(e)}")
try:
# Fallback to system unzip command
print("Attempting to unzip content using system command...")
subprocess.run(['unzip', '-o', './content.zip'], check=True)
except Exception as e:
print(f"System unzip failed: {str(e)}")
raise Exception("Failed to unzip content using both methods")
print("Content successfully unzipped!")
# Try to unzip content at startup
try:
unzip_content()
except Exception as e:
print(f"Warning: Could not unzip content: {str(e)}")
import gradio as gr
import numpy as np
import torch
import torchvision
import torchvision.transforms
import torchvision.transforms.functional
import PIL
import matplotlib.pyplot as plt
import yaml
from omegaconf import OmegaConf
from CLIP import clip
import os
os.chdir('./taming-transformers')
from taming.models.vqgan import VQModel
os.chdir('..')
from PIL import Image
import cv2
import imageio
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def create_video(image_folder='./generated', video_name='morphing_video.mp4'):
images = sorted([img for img in os.listdir(image_folder) if img.endswith(".png") or img.endswith(".jpg")])
if len(images) == 0:
print("No images found in the folder.")
return None
frame = cv2.imread(os.path.join(image_folder, images[0]))
height, width, layers = frame.shape
video_writer = imageio.get_writer(video_name, fps=10)
for image in images:
img_path = os.path.join(image_folder, image)
img = imageio.imread(img_path)
video_writer.append_data(img)
video_writer.close()
return video_name
def save_from_tensors(tensor, output_dir, filename):
img = tensor.clone()
img = img.mul(255).byte()
img = img.cpu().numpy().transpose((1, 2, 0))
os.makedirs(output_dir, exist_ok=True)
Image.fromarray(img).save(os.path.join(output_dir, filename))
def norm_data(data):
return (data.clip(-1, 1) + 1) / 2
def setup_clip_model():
model, _ = clip.load('ViT-B/32', jit=False)
model.eval().to(device)
return model
def setup_vqgan_model(config_path, checkpoint_path):
config = OmegaConf.load(config_path)
model = VQModel(**config.model.params)
state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
model.load_state_dict(state_dict, strict=False)
return model.eval().to(device)
def generator(x, model):
x = model.post_quant_conv(x)
x = model.decoder(x)
return x
def encode_text(text, clip_model):
t = clip.tokenize(text).to(device)
return clip_model.encode_text(t).detach().clone()
def create_encoding(include, exclude, extras, clip_model):
include_enc = [encode_text(text, clip_model) for text in include]
exclude_enc = [encode_text(text, clip_model) for text in exclude]
extras_enc = [encode_text(text, clip_model) for text in extras]
return include_enc, exclude_enc, extras_enc
def create_crops(img, num_crops=32, size1=225, noise_factor=0.05):
aug_transform = torch.nn.Sequential(
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.RandomAffine(30, translate=(0.1, 0.1), fill=0)
).to(device)
p = size1 // 2
img = torch.nn.functional.pad(img, (p, p, p, p), mode='constant', value=0)
img = aug_transform(img)
crop_set = []
for _ in range(num_crops):
gap1 = int(torch.normal(1.2, .3, ()).clip(.43, 1.9) * size1)
offsetx = torch.randint(0, int(size1 * 2 - gap1), ())
offsety = torch.randint(0, int(size1 * 2 - gap1), ())
crop = img[:, :, offsetx:offsetx + gap1, offsety:offsety + gap1]
crop = torch.nn.functional.interpolate(crop, (224, 224), mode='bilinear', align_corners=True)
crop_set.append(crop)
img_crops = torch.cat(crop_set, 0)
randnormal = torch.randn_like(img_crops, requires_grad=False)
randstotal = torch.rand((img_crops.shape[0], 1, 1, 1)).to(device)
img_crops = img_crops + noise_factor * randstotal * randnormal
return img_crops
def optimize_result(params, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc):
alpha = 1
beta = 0.5
out = generator(params, vqgan_model)
out = norm_data(out)
out = create_crops(out)
out = torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711))(out)
img_enc = clip_model.encode_image(out)
final_enc = w1 * prompt + w2 * extras_enc[0]
final_text_include_enc = final_enc / final_enc.norm(dim=-1, keepdim=True)
final_text_exclude_enc = exclude_enc[0]
main_loss = torch.cosine_similarity(final_text_include_enc, img_enc, dim=-1)
penalize_loss = torch.cosine_similarity(final_text_exclude_enc, img_enc, dim=-1)
return -alpha * main_loss.mean() + beta * penalize_loss.mean()
def optimize(params, optimizer, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc):
loss = optimize_result(params, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss
def training_loop(params, optimizer, include_enc, exclude_enc, extras_enc, vqgan_model, clip_model, w1, w2,
total_iter=200, show_step=1):
res_img = []
res_z = []
for prompt in include_enc:
for it in range(total_iter):
loss = optimize(params, optimizer, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc)
if it >= 0 and it % show_step == 0:
with torch.no_grad():
generated = generator(params, vqgan_model)
new_img = norm_data(generated[0].to(device))
res_img.append(new_img)
res_z.append(params.clone().detach())
print(f"loss: {loss.item():.4f}\nno. of iteration: {it}")
torch.cuda.empty_cache()
return res_img, res_z
def generate_art(include_text, exclude_text, extras_text, num_iterations):
try:
# Process the input prompts
include = [x.strip() for x in include_text.split(',')]
exclude = [x.strip() for x in exclude_text.split(',')]
extras = [x.strip() for x in extras_text.split(',')]
w1, w2 = 1.0, 0.9
# Setup models
clip_model = setup_clip_model()
vqgan_model = setup_vqgan_model("./models/vqgan_imagenet_f16_16384/configs/model.yaml",
"./models/vqgan_imagenet_f16_16384/checkpoints/last.ckpt")
# Parameters
learning_rate = 0.1
batch_size = 1
wd = 0.1
size1, size2 = 225, 400
# Initialize parameters
initial_image = PIL.Image.open('./gradient1.png')
initial_image = initial_image.resize((size2, size1))
initial_image = torchvision.transforms.ToTensor()(initial_image).unsqueeze(0).to(device)
with torch.no_grad():
z, _, _ = vqgan_model.encode(initial_image)
params = torch.nn.Parameter(z).to(device)
optimizer = torch.optim.AdamW([params], lr=learning_rate, weight_decay=wd)
params.data = params.data * 0.6 + torch.randn_like(params.data) * 0.4
# Encode prompts
include_enc, exclude_enc, extras_enc = create_encoding(include, exclude, extras, clip_model)
# Run training loop
res_img, res_z = training_loop(params, optimizer, include_enc, exclude_enc, extras_enc,
vqgan_model, clip_model, w1, w2, total_iter=num_iterations)
# Save results
output_dir = "generated"
# Create output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)
# Clear any existing files in the output directory
for file in os.listdir(output_dir):
file_path = os.path.join(output_dir, file)
if os.path.isfile(file_path):
os.remove(file_path)
for i, img in enumerate(res_img):
save_from_tensors(img, output_dir, f"generated_image_{i:03d}.png")
# Create video
video_path = create_video()
# Delete the generated folder and its contents after creating the video
import shutil
shutil.rmtree(output_dir)
return video_path
except Exception as e:
# If there's an error, ensure the generated folder is cleaned up
if os.path.exists("generated"):
import shutil
shutil.rmtree("generated")
raise e # Re-raise the exception to be handled by the calling function
def gradio_interface(include_text, exclude_text, extras_text, num_iterations):
try:
video_path = generate_art(include_text, exclude_text, extras_text, int(num_iterations))
return video_path
except Exception as e:
return f"An error occurred: {str(e)}"
# Define and launch the Gradio app
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Include Prompts (comma-separated)",
value="desert, heavy rain, cactus"),
gr.Textbox(label="Exclude Prompts (comma-separated)",
value="confusing, blurry"),
gr.Textbox(label="Extra Style Prompts (comma-separated)",
value="desert, clear, detailed, beautiful, good shape, detailed"),
gr.Number(label="Number of Iterations",
value=200, minimum=1, maximum=1000)
],
outputs=gr.Video(label="Generated Morphing Video"),
title="VQGAN-CLIP Art Generator",
description="""
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ivRYvTaX90PRghQIqAdOyEawkY0YLefa?authuser=0#scrollTo=WE7aPQ0t1hd2)
[![Clone Space](https://huggingface.co/datasets/huggingface/badges/raw/main/clone-space-lg.svg)](https://huggingface.co/spaces/your-username/your-space-name?duplicate=true)
Generate artistic videos using VQGAN-CLIP.
Enter your prompts separated by commas and adjust the number of iterations.
The model will generate a morphing video based on your inputs.
**Note:** This application requires GPU access. Please either:
1. Use the Colab notebook (click the Colab badge above) with GPU runtime
2. Clone this space (click Clone Space badge) and enable GPU in your personal copy""",
css="""
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-radius: 7px;
background: linear-gradient(45deg, #7747FF, #FF3557);
border: none;
height: 46px;
}
a {
text-decoration: none;
}
.maintenance-msg {
color: #FF0000;
font-size: 14px;
margin-top: 10px;
}
"""
)
if __name__ == "__main__":
print("Checking GPU availability:", "GPU AVAILABLE" if torch.cuda.is_available() else "NO GPU FOUND")
iface.launch() |