File size: 4,994 Bytes
7b3c770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0617ea
 
 
 
 
 
 
 
7b3c770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c95222f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
import subprocess
import whisper
from transformers import pipeline , T5ForConditionalGeneration, T5Tokenizer
import os
import torch
import spacy

# Load models once
whisper_model = whisper.load_model("base")
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=-1)

# Load model and tokenizer
model_name = "valhalla/t5-base-qg-hl"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)

import spacy
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    from spacy.cli import download
    download("en_core_web_sm")
    nlp = spacy.load("en_core_web_sm")


# Load QA pipeline
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")

def extract_audio(video_path, audio_output_path):
    command = ['ffmpeg', '-i', video_path, '-vn', '-acodec', 'pcm_s16le', '-ar', '44100', '-ac', '2', audio_output_path]
    subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    return audio_output_path

def process_video(video_file):
    try:
        import whisper
        from transformers import pipeline
        import subprocess
        import os

        audio_path = "extracted_audio.wav"

        # Extract audio from video using FFmpeg
        command = ['ffmpeg', '-i', video_file, '-vn', '-acodec', 'pcm_s16le', '-ar', '44100', '-ac', '2', audio_path]
        subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

        if not os.path.exists(audio_path):
            return "Audio extraction failed.", "No summary generated."

        # Load Whisper model
        model = whisper.load_model("base")
        result = model.transcribe(audio_path)

        transcript_text = result['text']

        # Load summarizer
        summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=-1)

        # Chunk text if needed
        chunks = [transcript_text[i:i + 1024] for i in range(0, len(transcript_text), 1024)]
        summaries = [summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text'] for chunk in chunks]
        final_summary = ' '.join(summaries)

        return transcript_text, final_summary

    except Exception as e:
        return f"Error: {str(e)}", f"Error: {str(e)}"

# Extract top named entities for highlighting
def select_top_entities(text, max_entities=3):
    doc = nlp(text)
    candidates = [ent.text for ent in doc.ents if 2 <= len(ent.text) <= 30 and len(ent.text.split()) <= 5]
    seen = set()
    top_entities = []
    for entity in candidates:
        if entity not in seen:
            seen.add(entity)
            top_entities.append(entity)
        if len(top_entities) >= max_entities:
            break
    return top_entities

# Generate questions for each highlighted entity
def generate_questions(context):
    entities = select_top_entities(context, max_entities=3)
    questions = []

    for ent in entities:
        highlighted = context.replace(ent, f"<hl> {ent} <hl>", 1)
        input_text = f"generate question: {highlighted}"
        input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True)
        outputs = model.generate(
            input_ids=input_ids,
            max_length=64,
            num_beams=4,
            num_return_sequences=1,
            no_repeat_ngram_size=2,
            early_stopping=True
        )
        question = tokenizer.decode(outputs[0], skip_special_tokens=True)
        questions.append(question)

    return "\n".join(f"Q{i+1}: {q}" for i, q in enumerate(questions))

def generate_answers(context, questions):
    """
    context: str β€” typically the summary
    questions: list[str] or str β€” can be multiline string or list
    returns: str β€” formatted answers
    """
    if isinstance(questions, str):
        questions = questions.strip().split('\n')

    answers = []
    for q in questions:
        if q.strip():
            result = qa_pipeline(question=q.strip(), context=context)
            answers.append(f"Q: {q.strip()}\nA: {result['answer']}")
    
    return "\n\n".join(answers)


import gradio as gr

# Dummy processing functions β€” replace these with your actual logic
def process_video_(video_path):
    # Step 1: Transcribe the video
    transcript , summary = process_video(video_path)

    questions = generate_questions(summary)

    answers = generate_answers(summary, questions)

    return transcript, summary, questions , answers

# Gradio Interface
iface = gr.Interface(
    fn=process_video_,
    inputs=gr.Video(label="Upload a video"),
    outputs=[
        gr.Textbox(label="Transcript"),
        gr.Textbox(label="Summary"),
        gr.Textbox(label="Generated Questions"),
        gr.Textbox(label="Generated Answers")
    ],
    title="Vision to Insight",
    description="Upload a video to extract a transcript, generate a summary, and get 2–3 meaningful questions based on the summary."
)

iface.launch(share=True)