Spaces:
Sleeping
Sleeping
File size: 13,480 Bytes
38b6b6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
from langchain_experimental.agents import create_pandas_dataframe_agent
from langchain.llms import OpenAI
import chainlit as cl
from plotly.subplots import make_subplots
import utils as u
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from tools import data_analyst
from tools import stock_sentiment_analysis_util
import functools
from typing import Annotated
import operator
from typing import Sequence, TypedDict
from langchain.agents import initialize_agent, Tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import END, StateGraph
import numpy as np
import pandas as pd
from dotenv import load_dotenv
import os
import yfinance as yf
import functools
from typing import Annotated
import operator
from typing import Sequence, TypedDict
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import END, StateGraph
from tools import data_analyst, forecasting_expert_arima, forecasting_expert_rf, evaluator, investment_advisor
from chainlit.input_widget import Select
import matplotlib.pyplot as plt
from langgraph.checkpoint.memory import MemorySaver
load_dotenv()
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
from GoogleNews import GoogleNews
def search_news(stockticker):
"""Useful to search the internet for news about a given topic and return relevant results."""
# Set the number of top news results to return
googlenews = GoogleNews()
googlenews.set_period('7d')
googlenews.get_news(stockticker)
result_string=googlenews.get_texts()
return result_string
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
# Each worker node will be given a name and some tools.
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
system_prompt,
),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
agent = create_openai_tools_agent(llm, tools, prompt)
executor = AgentExecutor(agent=agent, tools=tools)
return executor
def agent_node(state, agent, name):
result = agent.invoke(state)
return {"messages": [HumanMessage(content=result["output"], name=name)]}
llm = ChatOpenAI(model="gpt-3.5-turbo")
#======================== AGENTS ==================================
# The agent state is the input to each node in the graph
class AgentState(TypedDict):
# The annotation tells the graph that new messages will always
# be added to the current states
messages: Annotated[Sequence[BaseMessage], operator.add]
# The 'next' field indicates where to route to next
next: str
# DATA ANALYST
prompt_data_analyst="You are a stock data analyst.\
Provide correct stock ticker from Yahoo Finance.\
Expected output: stocticker.\
Provide it in the following format: >>stockticker>> \
for example: >>AAPL>>"
tools_data_analyst=data_analyst.data_analyst_tools()
data_agent = create_agent(
llm,
tools_data_analyst,
prompt_data_analyst)
get_historical_prices = functools.partial(agent_node, agent=data_agent, name="Data_analyst")
#ARIMA Forecasting expert
prompt_forecasting_expert_arima="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are stock prediction expert, \
take historical stock data from message and train the ARIMA model from statsmodels Python library on the last week,then provide prediction for the 'Close' price for the next day.\
Give the value for mae_arima to Evaluator.\
Expected output:list of predicted prices with predicted dates for a selected stock ticker and mae_arima value.\n
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
tools_forecasting_expert_arima=forecasting_expert_arima.forecasting_expert_arima_tools()
code_forecasting_arima = create_agent(
llm,
tools_forecasting_expert_arima,
prompt_forecasting_expert_arima,
)
predict_future_prices_arima = functools.partial(agent_node, agent=code_forecasting_arima, name="Forecasting_expert_ARIMA")
# RF Forecasting expert
prompt_forecasting_expert_random_forest="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are stock prediction expert, \
take historical stock data from message and train the Random forest model from statsmodels Python library on the last week,then provide prediction for the 'Close' price for the next day.\
Give the value for mae_rf to Evaluator.\
Expected output:list of predicted prices with predicted dates for a selected stock ticker and mae_rf value.\n
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
tools_forecasting_expert_random_forest=forecasting_expert_rf.forecasting_expert_rf_tools()
code_forecasting_random_forest = create_agent(
llm,
tools_forecasting_expert_random_forest,
prompt_forecasting_expert_random_forest,
)
predict_future_prices_random_forest = functools.partial(agent_node, agent=code_forecasting_random_forest, name="Forecasting_expert_random_forest")
# EVALUATOR
prompt_evaluator="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an evaluator retrieve arima_prediction and arima mean average error from forecasting expert arima and rf_prediction and mean average error for random forest from forecasting expert random forest\
print final prediction number.
Next, compare prediction price and current price to provide reccommendation if he should buy/sell/hold the stock. \
Expected output: one value for the prediction, explain why you have selected this value, reccommendation buy or sell stock and why.\
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
tools_evaluate=evaluator.evaluator_tools()
code_evaluate = create_agent(
llm,
tools_evaluate,
prompt_evaluator,
)
evaluate = functools.partial(agent_node, agent=code_evaluate, name="Evaluator")
# Investment advisor
prompt_inv_advisor="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Provide personalized investment advice and recommendations and analyze historical stock prices if asked.\
Consider user input message for the latest news on the stock.\
Provide overall sentiment of the news Positive/Negative/Neutral, and recommend if the user should invest in such stock.\
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
tools_reccommend=investment_advisor.investment_advisor_tools()
code_inv_advisor = create_agent(
llm,
tools_reccommend,
prompt_inv_advisor,
)
reccommend = functools.partial(agent_node, agent=code_inv_advisor, name="Investment_advisor")
workflow_data = StateGraph(AgentState)
workflow_data.add_node("Data_analyst", get_historical_prices)
workflow_data.set_entry_point("Data_analyst")
graph_data=workflow_data.compile()
workflow = StateGraph(AgentState)
#workflow.add_node("Data_analyst", get_historical_prices)
workflow.add_node("Forecasting_expert_random_forest", predict_future_prices_random_forest)
workflow.add_node("Forecasting_expert_ARIMA", predict_future_prices_arima)
workflow.add_node("Evaluator", evaluate)
# Finally, add entrypoint
workflow.set_entry_point("Forecasting_expert_random_forest")
workflow.add_edge("Forecasting_expert_random_forest","Forecasting_expert_ARIMA")
workflow.add_edge("Forecasting_expert_ARIMA","Evaluator")
workflow.add_edge("Evaluator",END)
graph = workflow.compile()
#Print graph
#graph.get_graph().print_ascii()
""" memory = MemorySaver()
workflow_news = StateGraph(AgentState)
workflow_news.add_node("Investment_advisor", reccommend)
workflow_news.set_entry_point("Investment_advisor")
workflow_news.add_edge("Investment_advisor",END)
graph_news = workflow_news.compile(checkpointer=memory) """
from langchain_core.runnables import RunnableConfig
from chainlit import AskUserMessage
@cl.on_chat_start
async def on_chat_start():
cl.user_session.set("counter", 0)
# Sending an image with the local file path
elements = [
cl.Image(name="image1", display="inline", path="./stock_image1.png",size="large")
]
await cl.Message(content="Hello there, Welcome to ##StockSavyy!", elements=elements).send()
await cl.Message(content="Tell me the stockticker you want me to analyze.").send()
@cl.on_message
async def main(message: cl.Message):
#"what is the weather in sf"
counter = cl.user_session.get("counter")
counter += 1
cl.user_session.set("counter", counter)
await cl.Message(content=f"You sent {counter} message(s)!").send()
#if counter==1:
inputs = {"messages": [HumanMessage(content=message.content)]}
res_data = graph_data.invoke(inputs, config=RunnableConfig(callbacks=[
cl.LangchainCallbackHandler(
to_ignore=["ChannelRead", "RunnableLambda", "ChannelWrite", "__start__", "_execute"]
# can add more into the to_ignore: "agent:edges", "call_model"
# to_keep=
)]))
#print(res_data)
await cl.Message(content=res_data["messages"][-1].content).send()
#print('ticker',str(res_data).split(">>"))
if len(str(res_data).split(">>")[1])<10:
stockticker=(str(res_data).split(">>")[1])
else:
stockticker=(str(res_data).split(">>")[0])
#print('ticker1',stockticker)
print('here')
df=u.get_stock_price(stockticker)
df_history=u.historical_stock_prices(stockticker,90)
df_history_to_msg1=eval(str(list((pd.DataFrame(df_history['Close'].values.reshape(1, -1)[0]).T).iloc[0,:])))
inputs_all = {"messages": [HumanMessage(content=(f"Predict {stockticker}, historical prices are: {df_history_to_msg1}."))]}
df_history=pd.DataFrame(df_history)
df_history['stockticker']=np.repeat(stockticker,len(df_history))
df_history.to_csv('df_history.csv')
#df_history.to_csv('./tools/df_history.csv')
print ("Running forecasting models on historical prices")
res = graph.invoke(inputs_all, config=RunnableConfig(callbacks=[
cl.LangchainCallbackHandler(
to_ignore=["ChannelRead", "RunnableLambda", "ChannelWrite", "__start__", "_execute"]
# can add more into the to_ignore: "agent:edges", "call_model"
# to_keep=
)]))
await cl.Message(content= res["messages"][-2].content + '\n\n' + res["messages"][-1].content).send()
#Plotting the graph
df=u.historical_stock_prices(stockticker,90)
df=u.calculate_MACD(df, fast_period=12, slow_period=26, signal_period=9)
#df values
#Index(['Open', 'High', 'Low', 'Close', 'Volume', 'Dividends', 'Stock Splits','EMA_fast', 'EMA_slow', 'MACD', 'Signal_Line', 'MACD_Histogram']
fig = u.plot_macd2(df)
if fig:
elements = [cl.Pyplot(name="plot", figure=fig, display="inline",size="large"),
]
await cl.Message(
content="Here is the MACD plot",
elements=elements,
).send()
else:
await cl.Message(
content="Failed to generate the MACD plot."
).send()
#Perform sentiment analysis on the stock news & predict dominant sentiment along with plotting the sentiment breakdown chart
news_articles = stock_sentiment_analysis_util.fetch_news(stockticker)
analysis_results = []
#Perform sentiment analysis for each product review
for article in news_articles:
sentiment_analysis_result = stock_sentiment_analysis_util.analyze_sentiment(article['News_Article'])
# Display sentiment analysis results
#print(f'News Article: {sentiment_analysis_result["News_Article"]} : Sentiment: {sentiment_analysis_result["Sentiment"]}', '\n')
result = {
'News_Article': sentiment_analysis_result["News_Article"],
'Sentiment': sentiment_analysis_result["Sentiment"][0]['label']
}
analysis_results.append(result)
#Retrieve dominant sentiment based on sentiment analysis data of reviews
dominant_sentiment = stock_sentiment_analysis_util.get_dominant_sentiment(analysis_results)
await cl.Message(
content="Dominant sentiment of the stock based on last 7 days of news is : " + dominant_sentiment
).send()
#Plot sentiment breakdown chart
fig = stock_sentiment_analysis_util.plot_sentiment_graph(analysis_results)
if fig:
elements = [cl.Pyplot(name="plot", figure=fig, display="inline",size="large"),
]
await cl.Message(
content="Sentiment breakdown plot",
elements=elements,
).send()
else:
await cl.Message(
content="Failed to generate the MACD plot."
).send()
#Generate summarized message rationalize dominant sentiment
summary = stock_sentiment_analysis_util.generate_summary_of_sentiment(analysis_results, dominant_sentiment)
await cl.Message(
content= summary
).send()
|