File size: 7,474 Bytes
416ad75
 
 
 
 
 
 
 
 
 
 
 
 
 
16952f5
 
 
 
b482e29
eed8ec8
416ad75
16952f5
 
416ad75
16952f5
 
 
416ad75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d80708
416ad75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d07f86c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# app.py

import os
import sys
import logging
from getpass import getpass
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import ChatPromptTemplate
import gradio as gr


import zipfile
import os

# Define your zip file path and destination folder
zip_file = "combined_folders.zip"
destination_folder = "properties_vectors"

# Create the destination folder if it doesn't exist
os.makedirs(destination_folder, exist_ok=True)

# Use zipfile to unzip
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
    zip_ref.extractall(destination_folder)



# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Function to get the absolute path
def get_absolute_path(relative_path):
    if getattr(sys, 'frozen', False):
        # If the application is run as a bundle, the PyInstaller bootloader
        # extends the sys module by a flag frozen=True and sets the app
        # path into variable _MEIPASS'.
        base_path = sys._MEIPASS
    else:
        base_path = os.path.abspath(".")
    return os.path.join(base_path, relative_path)

# Retrieve OpenAI API key from environment variable or prompt
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
    openai_api_key = getpass("Enter your OpenAI API key2: ")
    os.environ["OPENAI_API_KEY"] = openai_api_key

# Initialize embeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")

# Function to list available vector store directories
def list_vectorstore_directories(base_path='vectorstores'):
    """
    Lists all subdirectories in the base_path which are potential vector store directories.
    """
    directories = []
    try:
        for entry in os.listdir(base_path):
            full_path = os.path.join(base_path, entry)
            print(full_path)
            print(full_path)
            if os.path.isdir(full_path):
                # Check if the directory contains Chroma vector store files
                required_files = ['chroma.sqlite3']
                if all(os.path.exists(os.path.join(full_path, file)) for file in required_files):
                    directories.append(full_path)
    except Exception as e:
        logger.error(f"Error listing directories in '{base_path}': {e}")
    return directories

# Function to load selected vector stores
def load_selected_vectorstores(selected_dirs):
    """
    Loads Chroma vector stores from the selected directories.
    """
    vectorstores = []
    for directory in selected_dirs:
        try:
            vectorstore = Chroma(
                persist_directory=directory,
                embedding_function=embeddings
            )
            vectorstores.append(vectorstore)
            logger.info(f"Loaded vectorstore from '{directory}'.")
        except Exception as e:
            logger.error(f"Error loading vectorstore from '{directory}': {e}")
    return vectorstores

# Function to create a combined retriever
def create_combined_retriever(vectorstores, search_kwargs={"k": 20}):
    retrievers = [vs.as_retriever(search_kwargs=search_kwargs) for vs in vectorstores]

    class CombinedRetriever:
        def __init__(self, retrievers):
            self.retrievers = retrievers

        def get_relevant_documents(self, query):
            docs = []
            for retriever in self.retrievers:
                try:
                    docs.extend(retriever.get_relevant_documents(query))
                except Exception as e:
                    logger.error(f"Error retrieving documents: {e}")
            # Remove duplicates based on content and source
            unique_docs = { (doc.page_content, doc.metadata.get('source', '')): doc for doc in docs }
            return list(unique_docs.values())

    return CombinedRetriever(retrievers)

# Define the QA function
def answer_question(selected_dirs, question):
    if not selected_dirs:
        return "Please select at least one vector store directory."

    # Load the selected vector stores
    vectorstores = load_selected_vectorstores(selected_dirs)
    if not vectorstores:
        return "No vector stores loaded. Please check the selected directories."

    # Create combined retriever
    combined_retriever = create_combined_retriever(vectorstores, search_kwargs={"k": 20})

    # Load the LLM
    try:
        llm = ChatOpenAI(model_name="gpt-4o")
    except Exception as e:
        logger.error(f"Error loading LLM: {e}")
        return "Error loading the language model. Please check your OpenAI API key and access."

    # Define the prompt template
    template = """
    You are an AI assistant specialized in extracting precise information from legal documents.
    Special emphasis on documents but refer outside if necessary.
    Always include the source filename and page number in your response.
    If multiple documents are the always prefer the lastest date ones.
    If ammendment documents are the always prefer the ammendments.

    Context:
    {context}

    Question: {input}

    Answer:
    """

    prompt = ChatPromptTemplate.from_template(template)

    # Create QA chain
    try:
        qa_chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt)
    except Exception as e:
        logger.error(f"Error creating QA chain: {e}")
        return "Error initializing the QA system."

    # Retrieve documents
    try:
        retrieved_docs = combined_retriever.get_relevant_documents(question)
    except Exception as e:
        logger.error(f"Error retrieving documents: {e}")
        return "Error retrieving documents."

    if not retrieved_docs:
        return "No relevant documents found for the question."

    # Modify the retrieved documents to include metadata within the content
    for doc in retrieved_docs:
        source = doc.metadata.get("source", "Unknown Source")
        page_number = doc.metadata.get("page_number", "Unknown Page")
        doc.page_content = f"Source: {source}\nPage: {page_number}\nContent: {doc.page_content}"

    # Generate response using the QA chain
    try:
        response = qa_chain.run(input_documents=retrieved_docs, input=question)
    except Exception as e:
        logger.error(f"Error generating response: {e}")
        return "Error generating the response."

    return response

# Set Up the Gradio Interface

# Get absolute path for vectorstores
vectorstores_path = get_absolute_path('properties_vectors/vectors')

# List available vector store directories
available_dirs = list_vectorstore_directories(vectorstores_path)

# if not available_dirs:
#     available_dirs = [
#         "/content/trinity"
#      # Add other directories as needed
#     ]

# Define Gradio interface
iface = gr.Interface(
    fn=answer_question,
    inputs=[
        gr.CheckboxGroup(
            choices=available_dirs,
            label="Select Vector Store Directories"
        ),
        gr.Textbox(
            lines=2,
            placeholder="Enter your question here...",
            label="Your Question"
        )
    ],
    outputs=gr.Textbox(label="Response"),
    title="Vector Store QA Assistant",
    description="Select one or more vector store directories and ask your question. The assistant will retrieve relevant documents and provide an answer.",
    allow_flagging="never"
)

# Launch the interface
iface.launch(debug=True , share=True)