Spaces:
Sleeping
Sleeping
File size: 7,474 Bytes
416ad75 16952f5 b482e29 eed8ec8 416ad75 16952f5 416ad75 16952f5 416ad75 5d80708 416ad75 d07f86c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# app.py
import os
import sys
import logging
from getpass import getpass
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import ChatPromptTemplate
import gradio as gr
import zipfile
import os
# Define your zip file path and destination folder
zip_file = "combined_folders.zip"
destination_folder = "properties_vectors"
# Create the destination folder if it doesn't exist
os.makedirs(destination_folder, exist_ok=True)
# Use zipfile to unzip
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(destination_folder)
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Function to get the absolute path
def get_absolute_path(relative_path):
if getattr(sys, 'frozen', False):
# If the application is run as a bundle, the PyInstaller bootloader
# extends the sys module by a flag frozen=True and sets the app
# path into variable _MEIPASS'.
base_path = sys._MEIPASS
else:
base_path = os.path.abspath(".")
return os.path.join(base_path, relative_path)
# Retrieve OpenAI API key from environment variable or prompt
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
openai_api_key = getpass("Enter your OpenAI API key2: ")
os.environ["OPENAI_API_KEY"] = openai_api_key
# Initialize embeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
# Function to list available vector store directories
def list_vectorstore_directories(base_path='vectorstores'):
"""
Lists all subdirectories in the base_path which are potential vector store directories.
"""
directories = []
try:
for entry in os.listdir(base_path):
full_path = os.path.join(base_path, entry)
print(full_path)
print(full_path)
if os.path.isdir(full_path):
# Check if the directory contains Chroma vector store files
required_files = ['chroma.sqlite3']
if all(os.path.exists(os.path.join(full_path, file)) for file in required_files):
directories.append(full_path)
except Exception as e:
logger.error(f"Error listing directories in '{base_path}': {e}")
return directories
# Function to load selected vector stores
def load_selected_vectorstores(selected_dirs):
"""
Loads Chroma vector stores from the selected directories.
"""
vectorstores = []
for directory in selected_dirs:
try:
vectorstore = Chroma(
persist_directory=directory,
embedding_function=embeddings
)
vectorstores.append(vectorstore)
logger.info(f"Loaded vectorstore from '{directory}'.")
except Exception as e:
logger.error(f"Error loading vectorstore from '{directory}': {e}")
return vectorstores
# Function to create a combined retriever
def create_combined_retriever(vectorstores, search_kwargs={"k": 20}):
retrievers = [vs.as_retriever(search_kwargs=search_kwargs) for vs in vectorstores]
class CombinedRetriever:
def __init__(self, retrievers):
self.retrievers = retrievers
def get_relevant_documents(self, query):
docs = []
for retriever in self.retrievers:
try:
docs.extend(retriever.get_relevant_documents(query))
except Exception as e:
logger.error(f"Error retrieving documents: {e}")
# Remove duplicates based on content and source
unique_docs = { (doc.page_content, doc.metadata.get('source', '')): doc for doc in docs }
return list(unique_docs.values())
return CombinedRetriever(retrievers)
# Define the QA function
def answer_question(selected_dirs, question):
if not selected_dirs:
return "Please select at least one vector store directory."
# Load the selected vector stores
vectorstores = load_selected_vectorstores(selected_dirs)
if not vectorstores:
return "No vector stores loaded. Please check the selected directories."
# Create combined retriever
combined_retriever = create_combined_retriever(vectorstores, search_kwargs={"k": 20})
# Load the LLM
try:
llm = ChatOpenAI(model_name="gpt-4o")
except Exception as e:
logger.error(f"Error loading LLM: {e}")
return "Error loading the language model. Please check your OpenAI API key and access."
# Define the prompt template
template = """
You are an AI assistant specialized in extracting precise information from legal documents.
Special emphasis on documents but refer outside if necessary.
Always include the source filename and page number in your response.
If multiple documents are the always prefer the lastest date ones.
If ammendment documents are the always prefer the ammendments.
Context:
{context}
Question: {input}
Answer:
"""
prompt = ChatPromptTemplate.from_template(template)
# Create QA chain
try:
qa_chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt)
except Exception as e:
logger.error(f"Error creating QA chain: {e}")
return "Error initializing the QA system."
# Retrieve documents
try:
retrieved_docs = combined_retriever.get_relevant_documents(question)
except Exception as e:
logger.error(f"Error retrieving documents: {e}")
return "Error retrieving documents."
if not retrieved_docs:
return "No relevant documents found for the question."
# Modify the retrieved documents to include metadata within the content
for doc in retrieved_docs:
source = doc.metadata.get("source", "Unknown Source")
page_number = doc.metadata.get("page_number", "Unknown Page")
doc.page_content = f"Source: {source}\nPage: {page_number}\nContent: {doc.page_content}"
# Generate response using the QA chain
try:
response = qa_chain.run(input_documents=retrieved_docs, input=question)
except Exception as e:
logger.error(f"Error generating response: {e}")
return "Error generating the response."
return response
# Set Up the Gradio Interface
# Get absolute path for vectorstores
vectorstores_path = get_absolute_path('properties_vectors/vectors')
# List available vector store directories
available_dirs = list_vectorstore_directories(vectorstores_path)
# if not available_dirs:
# available_dirs = [
# "/content/trinity"
# # Add other directories as needed
# ]
# Define Gradio interface
iface = gr.Interface(
fn=answer_question,
inputs=[
gr.CheckboxGroup(
choices=available_dirs,
label="Select Vector Store Directories"
),
gr.Textbox(
lines=2,
placeholder="Enter your question here...",
label="Your Question"
)
],
outputs=gr.Textbox(label="Response"),
title="Vector Store QA Assistant",
description="Select one or more vector store directories and ask your question. The assistant will retrieve relevant documents and provide an answer.",
allow_flagging="never"
)
# Launch the interface
iface.launch(debug=True , share=True)
|