File size: 15,393 Bytes
07260dd d93101a 07260dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
import os
import zipfile
# # Upgrade pip (optional but recommended)
# !pip install --upgrade pip
# # Install all required packages
# !pip install chromadb faiss-cpu openai pypdf
# !pip install -U langchain-community
# !pip install tiktoken
# !pip install pymupdf
# !pip install langchain_openai
# !pip install gradio
# Verify installations
import langchain
import chromadb
import faiss
import openai
import pypdf
import os
import logging
import fitz # PyMuPDF
import re
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
# Ensure this is correct based on your environment
print("All packages installed successfully!")
# # Install gdown
# !pip install gdown
# Import the library
import gdown
os.system('!rm -rf ./*')
# Your Google Drive share link
url = 'https://drive.google.com/file/d/19JKWygyiD2IC_1xdDn1u3vxGZ7aT43d1/view?usp=sharing'
# Output filename
output = 'files.zip' # Change to your desired filename and extension
# Download the file with fuzzy option
gdown.download(url, output, quiet=False, fuzzy=True)
def extract_files_in_same_directory(zip_file_path):
"""
Extracts all files from a ZIP archive into the same directory as the ZIP file.
Args:
zip_file_path (str): Path to the ZIP file.
"""
# Check if the provided path is valid
if not os.path.exists(zip_file_path):
print(f"Error: The file {zip_file_path} does not exist.")
return
# Check if the file is a ZIP file
if not zip_file_path.endswith('.zip'):
print(f"Error: {zip_file_path} is not a ZIP file.")
return
# Get the directory of the ZIP file
output_dir = os.path.dirname(zip_file_path)
# Extract the ZIP file
try:
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(output_dir)
print(f"Extracted files from {zip_file_path} to {output_dir}")
except Exception as e:
print(f"Error extracting {zip_file_path}: {e}")
# Example Usage:
zip_file = "./files.zip" # Replace with the path to your ZIP file
extract_files_in_same_directory(zip_file)
os.system('!rm -rf ./files.zip')
import os
import logging
import fitz # PyMuPDF
import re
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
# Custom PDF Loader using PyMuPDF
def custom_load_pdfs(directory):
all_documents = []
for root, dirs, files in os.walk(directory):
for filename in files:
if filename.endswith('.pdf'): # Ensure only PDF files are processed
file_path = os.path.join(root, filename)
try:
doc = fitz.open(file_path)
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text = page.get_text()
# Extract page number from footer using regex
footer_text = page.get_text("text", flags=fitz.TEXT_PRESERVE_LIGATURES)
match = re.search(r'Page\s+(\d+)', footer_text, re.IGNORECASE)
extracted_page_number = match.group(1) if match else f"{page_num + 1}"
document = Document(
page_content=text,
metadata={
"source": file_path, # Include full file path
"page_number": extracted_page_number,
}
)
all_documents.append(document)
print(f"Loaded {len(doc)} pages from '{file_path}'.")
except Exception as e:
print(f"Failed to load '{file_path}': {e}")
return all_documents
# Initialize text splitter
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=300,
separators=["\n\n", "\n", " ", ""]
)
# Initialize embeddings with the default model
embeddings = OpenAIEmbeddings(model="text-embedding-3-small") # Uses 'text-embedding-ada-002' by default
# Directory containing subfolders with PDFs
top_level_directory = "./Content_files/Loan_docs/Loan Docs"
# Loop through each subfolder in the top-level directory
for folder_name in os.listdir(top_level_directory):
folder_path = os.path.join(top_level_directory, folder_name)
if os.path.isdir(folder_path): # Process only subfolders
logger.info(f"Processing folder: {folder_path}")
# Load and process documents for the specific subfolder
all_documents = custom_load_pdfs(folder_path)
logger.info(f"Total documents loaded from {folder_name}: {len(all_documents)}.")
# Split documents into chunks
split_documents = splitter.split_documents(all_documents)
logger.info(f"Split into {len(split_documents)} chunks for {folder_name}.")
# Remove duplicate chunks
unique_chunks = []
seen_contents = set()
for chunk in split_documents:
content_hash = hash(chunk.page_content)
if content_hash not in seen_contents:
unique_chunks.append(chunk)
seen_contents.add(content_hash)
logger.info(f"After removing duplicates, {len(unique_chunks)} unique chunks remain for {folder_name}.")
# Create Chroma vector store for this specific folder
try:
persist_directory = os.path.join("Vectors", folder_name) # Store each subfolder's index in its own directory
os.makedirs(persist_directory, exist_ok=True) # Ensure the directory exists
vectorstore = Chroma.from_documents(
documents=unique_chunks,
embedding=embeddings,
persist_directory=persist_directory
)
logger.info(f"Chroma vector store created successfully for {folder_name}.")
except Exception as e:
logger.error(f"Error creating Chroma vector store for {folder_name}: {e}")
# Persist the Chroma index to disk
try:
vectorstore.persist()
logger.info(f"Chroma index persisted to {persist_directory}.")
except Exception as e:
logger.error(f"Error persisting Chroma index for {folder_name}: {e}")
import os
import zipfile
def create_zip_from_folders(zip_file_path, folders_to_zip):
"""
Creates a ZIP file containing the contents of specified folders.
Args:
zip_file_path (str): The full path of the ZIP file to create.
folders_to_zip (list): List of folder paths to include in the ZIP file.
"""
try:
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
for folder_path in folders_to_zip:
if os.path.exists(folder_path) and os.path.isdir(folder_path):
# Walk through the folder structure and add files to the ZIP
for root, _, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(root, file)
# Create archive name relative to the folder
arcname = os.path.relpath(file_path, start=folder_path)
zipf.write(file_path, os.path.join(os.path.basename(folder_path), arcname))
print(f"Added {file_path} as {os.path.join(os.path.basename(folder_path), arcname)}")
else:
print(f"Folder not found or is not a directory: {folder_path}")
print(f"ZIP file created at: {zip_file_path}")
except Exception as e:
print(f"Error creating ZIP file: {e}")
# Example Usage
folders = [
"./Vectors/*"
# Replace with your folder paths
]
zip_output_path = "./vectors(2).zip" # Replace with desired output ZIP file path
create_zip_from_folders(zip_output_path, folders)
import os
import sys
import logging
from getpass import getpass
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import ChatPromptTemplate
import gradio as gr
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Function to get the absolute path
def get_absolute_path(relative_path):
if getattr(sys, 'frozen', False):
# If the application is run as a bundle, the PyInstaller bootloader
# extends the sys module by a flag frozen=True and sets the app
# path into variable _MEIPASS'.
base_path = sys._MEIPASS
else:
base_path = os.path.abspath(".")
return os.path.join(base_path, relative_path)
# Retrieve OpenAI API key from environment variable or prompt
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
openai_api_key = getpass("Enter your OpenAI API key2: ")
os.environ["OPENAI_API_KEY"] = openai_api_key
# Initialize embeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
# Function to list available vector store directories
def list_vectorstore_directories(base_path='vectorstores'):
"""
Lists all subdirectories in the base_path which are potential vector store directories.
"""
directories = []
try:
for entry in os.listdir(base_path):
full_path = os.path.join(base_path, entry)
if os.path.isdir(full_path):
# Check if the directory contains Chroma vector store files
required_files = ['chroma.sqlite3']
if all(os.path.exists(os.path.join(full_path, file)) for file in required_files):
print(full_path)
directories.append(full_path)
except Exception as e:
logger.error(f"Error listing directories in '{base_path}': {e}")
return directories
# Function to load selected vector stores
def load_selected_vectorstores(selected_dirs):
"""
Loads Chroma vector stores from the selected directories.
"""
vectorstores = []
for directory in selected_dirs:
try:
vectorstore = Chroma(
persist_directory=directory,
embedding_function=embeddings
)
vectorstores.append(vectorstore)
logger.info(f"Loaded vectorstore from '{directory}'.")
except Exception as e:
logger.error(f"Error loading vectorstore from '{directory}': {e}")
return vectorstores
# Function to create a combined retriever
def create_combined_retriever(vectorstores, search_kwargs={"k": 20}):
retrievers = [vs.as_retriever(search_kwargs=search_kwargs) for vs in vectorstores]
class CombinedRetriever:
def __init__(self, retrievers):
self.retrievers = retrievers
def get_relevant_documents(self, query):
docs = []
for retriever in self.retrievers:
try:
docs.extend(retriever.get_relevant_documents(query))
except Exception as e:
logger.error(f"Error retrieving documents: {e}")
# Remove duplicates based on content and source
unique_docs = { (doc.page_content, doc.metadata.get('source', '')): doc for doc in docs }
return list(unique_docs.values())
return CombinedRetriever(retrievers)
# Define the QA function
def answer_question(selected_dirs, question):
if not selected_dirs:
return "Please select at least one vector store directory."
# Load the selected vector stores
vectorstores = load_selected_vectorstores(selected_dirs)
if not vectorstores:
return "No vector stores loaded. Please check the selected directories."
# Create combined retriever
combined_retriever = create_combined_retriever(vectorstores, search_kwargs={"k": 20})
# Load the LLM
try:
llm = ChatOpenAI(model_name="gpt-4o")
except Exception as e:
logger.error(f"Error loading LLM: {e}")
return "Error loading the language model. Please check your OpenAI API key and access."
# Define the prompt template
template = """
You are an AI assistant specialized in extracting precise information from legal documents.
Special emphasis on documents but refer outside if necessary.
Always include the source filename and page number in your response.
If multiple documents are the always prefer the lastest date ones.
If ammendment documents are the always prefer the ammendments.
Context:
{context}
Question: {input}
Answer:
"""
prompt = ChatPromptTemplate.from_template(template)
# Create QA chain
try:
qa_chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt)
except Exception as e:
logger.error(f"Error creating QA chain: {e}")
return "Error initializing the QA system."
# Retrieve documents
try:
retrieved_docs = combined_retriever.get_relevant_documents(question)
except Exception as e:
logger.error(f"Error retrieving documents: {e}")
return "Error retrieving documents."
if not retrieved_docs:
return "No relevant documents found for the question."
# Modify the retrieved documents to include metadata within the content
for doc in retrieved_docs:
source = doc.metadata.get("source", "Unknown Source")
page_number = doc.metadata.get("page_number", "Unknown Page")
doc.page_content = f"Source: {source}\nPage: {page_number}\nContent: {doc.page_content}"
# Generate response using the QA chain
try:
response = qa_chain.run(input_documents=retrieved_docs, input=question)
except Exception as e:
logger.error(f"Error generating response: {e}")
return "Error generating the response."
return response
# Set Up the Gradio Interface
# Get absolute path for vectorstores
vectorstores_path = get_absolute_path('./Vectors')
# List available vector store directories
available_dirs = list_vectorstore_directories(vectorstores_path)
# if not available_dirs:
# available_dirs = [
# "/content/trinity"
# # Add other directories as needed
# ]
# Define Gradio interface
iface = gr.Interface(
fn=answer_question,
inputs=[
gr.CheckboxGroup(
choices=available_dirs,
label="Select Vector Store Directories"
),
gr.Textbox(
lines=2,
placeholder="Enter your question here...",
label="Your Question"
)
],
outputs=gr.Textbox(label="Response"),
title="Vector Store QA Assistant",
description="Select one or more vector store directories and ask your question. The assistant will retrieve relevant documents and provide an answer.",
allow_flagging="never"
)
os.system('!rm -rf ./Content_files')
# Launch the interface
iface.launch(debug=True) |