Spaces:
Running
Running
File size: 17,724 Bytes
e58b1c2 975f9c6 5234a64 d373620 e58b1c2 5234a64 8254c9e 9ac49a2 5234a64 d373620 8254c9e d373620 e58b1c2 6ae35d6 8254c9e d373620 9ac49a2 d373620 0f29b7c 8254c9e 0f29b7c 9ac49a2 d373620 8254c9e 946777c c320b80 9f46cc7 956dff8 946777c 956dff8 9f46cc7 956dff8 946777c 9f46cc7 956dff8 946777c 956dff8 946777c 956dff8 946777c 6ae35d6 946777c 9f46cc7 3137c41 6ae35d6 3137c41 6ae35d6 946777c 3137c41 a6294cd 946777c 8254c9e 3137c41 8254c9e 3137c41 c320b80 9ac49a2 946777c 5234a64 6ae35d6 9f46cc7 8254c9e 946777c ded0d50 373b0d2 ded0d50 956dff8 946777c 956dff8 946777c ded0d50 8254c9e 946777c 6ae35d6 ded0d50 946777c ded0d50 8254c9e ded0d50 9ac49a2 5234a64 9ac49a2 ded0d50 9ac49a2 b7eaba3 946777c ded0d50 946777c 4b8d12c ded0d50 946777c b7eaba3 946777c b7eaba3 ded0d50 946777c b7eaba3 946777c b7eaba3 946777c ded0d50 b7eaba3 ded0d50 946777c 9ac49a2 ded0d50 e58b1c2 946777c ded0d50 b7eaba3 e58b1c2 ded0d50 e58b1c2 946777c e58b1c2 ded0d50 6d57019 e58b1c2 ded0d50 e58b1c2 b7eaba3 6d57019 946777c 6d57019 ded0d50 956dff8 b7eaba3 e58b1c2 ded0d50 6ae35d6 9ac49a2 6ae35d6 975f9c6 9ac49a2 b7eaba3 9ac49a2 c320b80 3137c41 9ac49a2 946777c 3137c41 946777c b613b80 946777c 9ac49a2 ded0d50 6ae35d6 9ac49a2 6ae35d6 946777c 6ae35d6 9ac49a2 6ae35d6 9ac49a2 946777c 6ae35d6 ded0d50 946777c 6ae35d6 946777c 6ae35d6 b613b80 6ae35d6 b613b80 8254c9e b613b80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import pytesseract
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
from PIL import Image
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Save image to debug directory with timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if isinstance(img, Image.Image):
img.save(filename)
elif len(img.shape) == 3:
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
else:
cv2.imwrite(filename, img)
logging.info(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def preprocess_image(img):
"""Preprocess image with simplified, robust contrast enhancement."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
brightness = estimate_brightness(img)
# Apply mild CLAHE for contrast
clahe_clip = 8.0 if brightness < 90 else 4.0
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
enhanced = clahe.apply(gray)
save_debug_image(enhanced, "01_preprocess_clahe")
# Light blur to reduce noise
blurred = cv2.GaussianBlur(enhanced, (5, 5), 0)
save_debug_image(blurred, "02_preprocess_blur")
# Dynamic thresholding with larger block size for small displays
block_size = max(7, min(31, int(img.shape[0] / 20) * 2 + 1))
thresh = cv2.adaptiveThreshold(
blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 3
)
# Minimal morphological operations
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
save_debug_image(thresh, "03_preprocess_morph")
return thresh, enhanced
def correct_rotation(img):
"""Correct image rotation using edge detection."""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 30, 100, apertureSize=3)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=25, minLineLength=15, maxLineGap=10)
if lines is not None:
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
angle = np.median(angles)
if abs(angle) > 0.3:
h, w = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
img = cv2.warpAffine(img, M, (w, h))
save_debug_image(img, "00_rotated_image")
logging.info(f"Applied rotation: {angle:.2f} degrees")
return img
except Exception as e:
logging.error(f"Rotation correction failed: {str(e)}")
return img
def detect_roi(img):
"""Detect region of interest with broader contour analysis."""
try:
save_debug_image(img, "04_original")
thresh, enhanced = preprocess_image(img)
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
block_sizes = [max(7, min(31, int(img.shape[0] / s) * 2 + 1)) for s in [5, 10, 20]]
valid_contours = []
img_area = img.shape[0] * img.shape[1]
for block_size in block_sizes:
temp_thresh = cv2.adaptiveThreshold(
enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 3
)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}")
contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
area = cv2.contourArea(c)
x, y, w, h = cv2.boundingRect(c)
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
aspect_ratio = w / h
if (50 < area < (img_area * 0.95) and
0.05 <= aspect_ratio <= 20.0 and w > 20 and h > 8 and roi_brightness > 15):
valid_contours.append((c, area * roi_brightness))
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
if valid_contours:
contour, _ = max(valid_contours, key=lambda x: x[1])
x, y, w, h = cv2.boundingRect(contour)
padding = max(5, min(20, int(min(w, h) * 0.4)))
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "06_detected_roi")
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No ROI found, using full image.")
save_debug_image(img, "06_no_roi_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "06_roi_error_fallback")
return img, None
def detect_digit_template(digit_img, brightness):
"""Digit recognition with expanded template matching."""
try:
h, w = digit_img.shape
if h < 5 or w < 2:
logging.debug("Digit image too small for template matching.")
return None
# Expanded digit templates for seven-segment display variations
digit_templates = {
'0': [
np.array([[1, 1, 1, 1, 1],
[1, 0, 0, 0, 1],
[1, 0, 0, 0, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1]], dtype=np.float32),
np.array([[1, 1, 1, 1],
[1, 0, 0, 1],
[1, 0, 0, 1],
[1, 0, 0, 1],
[1, 1, 1, 1]], dtype=np.float32)
],
'1': [
np.array([[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0]], dtype=np.float32),
np.array([[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0]], dtype=np.float32)
],
'2': [
np.array([[1, 1, 1, 1, 1],
[0, 0, 0, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 0, 0, 0],
[1, 1, 1, 1, 1]], dtype=np.float32),
np.array([[1, 1, 1, 1],
[0, 0, 1, 1],
[1, 1, 1, 1],
[1, 1, 0, 0],
[1, 1, 1, 1]], dtype=np.float32)
],
'3': [
np.array([[1, 1, 1, 1, 1],
[0, 0, 0, 1, 1],
[1, 1, 1, 1, 1],
[0, 0, 0, 1, 1],
[1, 1, 1, 1, 1]], dtype=np.float32),
np.array([[1, 1, 1, 1],
[0, 0, 1, 1],
[1, 1, 1, 1],
[0, 0, 1, 1],
[1, 1, 1, 1]], dtype=np.float32)
],
'4': [
np.array([[1, 1, 0, 0, 1],
[1, 1, 0, 0, 1],
[1, 1, 1, 1, 1],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 1]], dtype=np.float32),
np.array([[1, 0, 0, 1],
[1, 0, 0, 1],
[1, 1, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 1]], dtype=np.float32)
],
'5': [
np.array([[1, 1, 1, 1, 1],
[1, 1, 0, 0, 0],
[1, 1, 1, 1, 1],
[0, 0, 0, 1, 1],
[1, 1, 1, 1, 1]], dtype=np.float32),
np.array([[1, 1, 1, 1],
[1, 1, 0, 0],
[1, 1, 1, 1],
[0, 0, 1, 1],
[1, 1, 1, 1]], dtype=np.float32)
],
'6': [
np.array([[1, 1, 1, 1, 1],
[1, 1, 0, 0, 0],
[1, 1, 1, 1, 1],
[1, 0, 0, 1, 1],
[1, 1, 1, 1, 1]], dtype=np.float32),
np.array([[1, 1, 1, 1],
[1, 1, 0, 0],
[1, 1, 1, 1],
[1, 0, 1, 1],
[1, 1, 1, 1]], dtype=np.float32)
],
'7': [
np.array([[1, 1, 1, 1, 1],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 1]], dtype=np.float32),
np.array([[1, 1, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 1]], dtype=np.float32)
],
'8': [
np.array([[1, 1, 1, 1, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1]], dtype=np.float32),
np.array([[1, 1, 1, 1],
[1, 0, 0, 1],
[1, 1, 1, 1],
[1, 0, 0, 1],
[1, 1, 1, 1]], dtype=np.float32)
],
'9': [
np.array([[1, 1, 1, 1, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1],
[0, 0, 0, 1, 1],
[1, 1, 1, 1, 1]], dtype=np.float32),
np.array([[1, 1, 1, 1],
[1, 0, 0, 1],
[1, 1, 1, 1],
[0, 0, 1, 1],
[1, 1, 1, 1]], dtype=np.float32)
],
'.': [
np.array([[0, 0, 0],
[0, 1, 0],
[0, 0, 0]], dtype=np.float32),
np.array([[0, 0],
[1, 0],
[0, 0]], dtype=np.float32)
]
}
# Try multiple sizes for digit image
sizes = [(5, 5), (4, 4), (3, 3)] if h > w else [(3, 3), (2, 2)]
best_match, best_score = None, -1
for size in sizes:
digit_img_resized = cv2.resize(digit_img, size, interpolation=cv2.INTER_AREA)
digit_img_resized = (digit_img_resized > 100).astype(np.float32) # Binarize
for digit, templates in digit_templates.items():
for template in templates:
if digit == '.' and size[0] > 3:
continue
if digit != '.' and size[0] <= 3:
continue
if template.shape[0] != size[0] or template.shape[1] != size[1]:
continue
result = cv2.matchTemplate(digit_img_resized, template, cv2.TM_CCOEFF_NORMED)
_, max_val, _, _ = cv2.minMaxLoc(result)
if max_val > 0.55 and max_val > best_score: # Further lowered threshold
best_score = max_val
best_match = digit
logging.debug(f"Template match: {best_match}, Score: {best_score:.2f}")
return best_match if best_score > 0.55 else None
except Exception as e:
logging.error(f"Template digit detection failed: {str(e)}")
return None
def perform_ocr(img, roi_bbox):
"""Perform OCR with Tesseract and robust template fallback."""
try:
thresh, enhanced = preprocess_image(img)
brightness = estimate_brightness(img)
pil_img = Image.fromarray(enhanced)
save_debug_image(pil_img, "07_ocr_input")
# Try multiple Tesseract configurations
configs = [
r'--oem 3 --psm 7 -c tessedit_char_whitelist=0123456789.', # Single line
r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.' # Block of text
]
for config in configs:
text = pytesseract.image_to_string(pil_img, config=config)
logging.info(f"Tesseract raw output (config {config}): {text}")
text = re.sub(r"[^\d\.]", "", text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.lstrip('0') or '0'
confidence = 95.0 if len(text.replace('.', '')) >= 3 else 90.0
logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%")
return text, confidence
# Fallback to template-based detection
logging.info("Tesseract failed, using template-based detection.")
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
digits_info = []
for c in contours:
x, y, w, h = cv2.boundingRect(c)
if w > 4 and h > 5 and 0.03 <= w/h <= 4.0:
digits_info.append((x, x+w, y, y+h))
if digits_info:
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
prev_x_max = -float('inf')
for idx, (x_min, x_max, y_min, y_max) in enumerate(digits_info):
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_crop = thresh[y_min:y_max, x_min:x_max]
save_debug_image(digit_crop, f"08_digit_crop_{idx}")
digit = detect_digit_template(digit_crop, brightness)
if digit:
recognized_text += digit
elif x_min - prev_x_max < 10 and prev_x_max != -float('inf'):
recognized_text += '.'
prev_x_max = x_max
text = re.sub(r"[^\d\.]", "", recognized_text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.lstrip('0') or '0'
confidence = 90.0 if len(text.replace('.', '')) >= 3 else 85.0
logging.info(f"Validated template text: {text}, Confidence: {confidence:.2f}%")
return text, confidence
logging.info("No valid digits detected.")
return None, 0.0
except Exception as e:
logging.error(f"OCR failed: {str(e)}")
return None, 0.0
def extract_weight_from_image(pil_img):
"""Extract weight from any digital scale image."""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
img = correct_rotation(img)
brightness = estimate_brightness(img)
conf_threshold = 0.65 if brightness > 70 else 0.45
# Try ROI-based detection
roi_img, roi_bbox = detect_roi(img)
if roi_bbox:
conf_threshold *= 1.15 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.05) else 1.0
result, confidence = perform_ocr(roi_img, roi_bbox)
if result and confidence >= conf_threshold * 100:
try:
weight = float(result)
if 0.001 <= weight <= 5000:
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
return result, confidence
logging.warning(f"Weight {result} out of range.")
except ValueError:
logging.warning(f"Invalid weight format: {result}")
# Full image fallback
logging.info("Primary OCR failed, using full image fallback.")
result, confidence = perform_ocr(img, None)
if result and confidence >= conf_threshold * 0.85 * 100:
try:
weight = float(result)
if 0.001 <= weight <= 5000:
logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%")
return result, confidence
logging.warning(f"Full image weight {result} out of range.")
except ValueError:
logging.warning(f"Invalid full image weight format: {result}")
logging.info("No valid weight detected.")
return "Not detected", 0.0
except Exception as e:
logging.error(f"Weight extraction failed: {str(e)}")
return "Not detected", 0.0 |