Spaces:
Build error
Build error
File size: 1,242 Bytes
a5cb665 bfcb0af a5cb665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from datasets import load_dataset
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
SAVED_MODEL_PATH = 'bart_base_full_finetune_save'
model_name = "facebook/bart-base"
model = AutoModelForSeq2SeqLM.from_pretrained(SAVED_MODEL_PATH).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
dataset = load_dataset("samsum")
train_data = dataset["train"]
validation_data = dataset["validation"]
test_data = dataset["test"]
def summarize(tokenizer, model, text):
inputs = tokenizer(f"Summarize dialogue >>\n {text}", return_tensors="pt", max_length=1000, truncation=True, padding="max_length").to(device)
summary_ids = model.generate(inputs.input_ids, num_beams=4, max_length=100, early_stopping=True)
summary = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
return summary[0]
def summarize_dialogue(text):
return summarize(tokenizer, model, text)
iface = gr.Interface(
fn=summarize_dialogue,
inputs=gr.inputs.Textbox(lines=10, label="Input Dialogue"),
outputs=gr.outputs.Textbox(label="Generated Summary")
)
iface.launch()
|