Spaces:
Sleeping
Sleeping
File size: 6,974 Bytes
a4a5dbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
#Importing Necessary libraries
import streamlit as st
import numpy as np
from PIL import Image
from tensorflow.keras.datasets import imdb
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.applications.inception_v3 import preprocess_input
import tensorflow as tf
import pickle
from tensorflow.keras.preprocessing import sequence
# Load the tokenizer using pickle
with open(r'tokenizer_rnn.pkl', 'rb') as handle:
tokenizer_rnn = pickle.load(handle)
with open(r'tokenizer_dnn.pkl', 'rb') as handle:
tokenizer_dnn = pickle.load(handle)
with open(r'tokenizer_per.pkl', 'rb') as handle:
tokenizer_per = pickle.load(handle)
with open(r'tokenizer_backpropagation.pkl', 'rb') as handle:
tokenizer_back = pickle.load(handle)
# Load saved models
image_model = load_model('tumor_detection_model.h5')
#dnn_model = tf.keras.models.load_model('dnn_model_imdb.h5')
loaded_model = tf.keras.models.load_model('spam_model.h5')
lstm_model = tf.keras.models.load_model('lstm_model.h5')
dnn_model = tf.keras.models.load_model('spam_dnn_model.h5')
with open('spam_perceptron_model.pkl', 'rb') as model_file:
loaded_perceptron = pickle.load(model_file)
with open('spam_backpropagation_model.pkl', 'rb') as model_file:
lbackprop_model = pickle.load(model_file)
# Streamlit app
st.title("Classification App")
# Sidebar
task = st.sidebar.selectbox("Select Task", ["Tumor Detection", "Sentiment Classification"])
def preprocess_text(text):
tokenizer = Tokenizer()
tokenizer.fit_on_texts([text])
sequences = tokenizer.texts_to_sequences([text])
preprocessed_text = pad_sequences(sequences, maxlen=4)
return preprocessed_text
def predict_dnn(text_input):
encoded_input = tokenizer_dnn.texts_to_sequences([text_input])
padded_input = pad_sequences(encoded_input, maxlen=200, padding='post')
prediction = dnn_model.predict(padded_input)
prediction_value = prediction[0]
# Adjust the threshold based on your model and problem
if prediction_value > 0.5:
return "Spam"
else:
return "Ham"
def predict_lstm(text_input):
words = 5000
max_review_length=500
word_index = imdb.get_word_index()
text_input = text_input.lower().split()
text_input = [word_index[word] if word in word_index and word_index[word] < words else 0 for word in text_input]
text_input = sequence.pad_sequences([text_input], maxlen=max_review_length)
prediction = lstm_model.predict(text_input)
print("Raw Prediction:", prediction)
if prediction > 0.5:
return "Positive"
else:
return "Negative"
def predict_rnn(input_text):
encoded_input = tokenizer_rnn.texts_to_sequences([input_text])
padded_input = tf.keras.preprocessing.sequence.pad_sequences(encoded_input, maxlen=10, padding='post')
prediction = loaded_model.predict(padded_input)
if prediction > 0.5:
return "Spam"
else:
return "Ham"
def predict_perceptron(text_input):
encoded_input = tokenizer_per.texts_to_sequences([text_input])
padded_input = pad_sequences(encoded_input, maxlen=200, padding='post')
prediction = loaded_perceptron.predict(padded_input)
prediction_value = prediction[0]
# Adjust the threshold based on your model and problem
if prediction_value > 0.5:
return "Spam"
else:
return "Ham"
def predict_backpropogation(text_input):
encoded_input = tokenizer_back.texts_to_sequences([text_input])
padded_input = pad_sequences(encoded_input, maxlen=200, padding='post')
prediction = lbackprop_model.predict(padded_input)
prediction_value = prediction[0]
# Adjust the threshold based on your model and problem
if prediction_value > 0.5:
return "Spam"
else:
return "Ham"
# make a prediction for CNN
def preprocess_image(image):
image = image.resize((299, 299))
image_array = np.array(image)
preprocessed_image = preprocess_input(image_array)
return preprocessed_image
def make_prediction_cnn(image, image_model):
img = image.resize((128, 128))
img_array = np.array(img)
img_array = img_array.reshape((1, img_array.shape[0], img_array.shape[1], img_array.shape[2]))
preprocessed_image = preprocess_input(img_array)
prediction = image_model.predict(preprocessed_image)
if prediction > 0.5:
st.write("Tumor Detected")
else:
st.write("No Tumor")
if task == "Sentiment Classification":
st.subheader("Choose Model")
model_choice = st.radio("Select Model", ["DNN (Email)", "RNN (Email)", "Perceptron (Email)", "Backpropagation (Email)","LSTM (Movie_Review)"])
st.subheader("Text Input")
text_input = st.text_area("Enter Text")
if st.button("Predict"):
# Preprocess the text
preprocessed_text = preprocess_text(text_input)
if model_choice == "DNN (Email)":
if text_input:
prediction_result = predict_dnn(text_input)
st.write(f"The message is classified as: {prediction_result}")
elif model_choice == "RNN (Email)":
if text_input:
prediction_result = predict_rnn(text_input)
st.write(f"The message is classified as: {prediction_result}")
else:
st.write("Please enter some text for prediction")
elif model_choice == "LSTM (Movie_Review)":
if text_input:
prediction_result = predict_lstm(text_input)
st.write(f"The sentiment is: {prediction_result}")
else:
st.write("Please enter some text for prediction")
elif model_choice == "Perceptron (Email)":
if text_input:
prediction_result = predict_perceptron(text_input)
st.write(f"The message is classified as: {prediction_result}")
else:
st.write("Please enter some text for prediction")
elif model_choice == "Backpropagation (Email)":
if text_input:
prediction_result = predict_backpropogation(text_input)
st.write(f"The message is classified as: {prediction_result}")
else:
st.write("Please enter some text for prediction")
else:
st.subheader("Choose Model")
model_choice = st.radio("Select Model", ["CNN"])
st.subheader("Image Input")
image_input = st.file_uploader("Choose an image...", type="jpg")
if image_input is not None:
image = Image.open(image_input)
st.image(image, caption="Uploaded Image.", use_column_width=True)
# Preprocess the image
preprocessed_image = preprocess_image(image)
if st.button("Predict"):
if model_choice == "CNN":
make_prediction_cnn(image, image_model)
|