File size: 2,262 Bytes
2f9b252 5a630d8 b302134 5a630d8 2f9b252 2c82ecd 5a630d8 2f9b252 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
import torch
from datasets import load_dataset
from transformers import pipeline, SpeechT5Processor, SpeechT5HifiGan, SpeechT5ForTextToSpeech
model_id = "Sandiago21/speecht5_finetuned_facebook_voxpopuli_french" # update with your model id
# pipe = pipeline("automatic-speech-recognition", model=model_id)
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
# checkpoint = "microsoft/speecht5_tts"
processor = SpeechT5Processor.from_pretrained(model_id)
replacements = [
("à", "a"),
("â", "a"),
("ç", "c"),
("è", "e"),
("ë", "e"),
("î", "i"),
("ï", "i"),
("ô", "o"),
("ù", "u"),
("û", "u"),
("ü", "u"),
]
title = "Text-to-Speech"
description = """
Demo for text-to-speech translation in French. Demo uses [Sandiago21/speecht5_finetuned_facebook_voxpopuli_french](https://huggingface.co/Sandiago21/speecht5_finetuned_facebook_voxpopuli_french) checkpoint, which is based on Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model and is fine-tuned in French Audio dataset
![Text-to-Speech (TTS)"](https://geekflare.com/wp-content/uploads/2021/07/texttospeech-1200x385.png "Diagram of Text-to-Speech (TTS)")
"""
def cleanup_text(text):
for src, dst in replacements:
text = text.replace(src, dst)
return text
def synthesize_speech(text):
text = cleanup_text(text)
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
return gr.Audio.update(value=(16000, speech.cpu().numpy()))
syntesize_speech_gradio = gr.Interface(
synthesize_speech,
inputs = gr.Textbox(label="Text", placeholder="Type something here..."),
outputs=gr.Audio(),
examples=["Je n'entrerai pas dans les détails, mais je profiterai des secondes qui me restent pour exposer la position ALDE sur le marquage CE, un des points cruciaux de ce rapport."],
title=title,
description=description,
).launch()
|