Spaces:
Sleeping
Sleeping
File size: 6,939 Bytes
10d0120 fbf24fd c3f9309 10d0120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import subprocess
import streamlit as st
from decouple import config
import asyncio
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_groq import ChatGroq
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
from langchain_core.messages import SystemMessage
from scraper.scraper import process_urls
from embedding.vector_store import initialize_vector_store, clear_chroma_db
from conversation.talks import clean_input, small_talks
#subprocess.run(["playwright", "install"], check=True)
#subprocess.run(["playwright", "install-deps"], check=True)
#Clearing ChromaDB at startup to clean up any previous data
clear_chroma_db()
#Groq API Key
groq_api = config("GROQ_API_KEY")
#Initializing LLM with memory
llm = ChatGroq(model="llama-3.2-1b-preview", groq_api_key=groq_api, temperature=0)
#Ensure proper asyncio handling for Windows
import sys
if sys.platform.startswith("win"):
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
#Async helper function
def run_asyncio_coroutine(coro):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coro)
import streamlit as st
st.title("WebGPT 1.0 π€")
# URL inputs
urls = st.text_area("Enter URLs (one per line)")
run_scraper = st.button("Run Scraper", disabled=not urls.strip())
# Sessions & states
if "messages" not in st.session_state:
st.session_state.messages = [] # Chat history
if "history" not in st.session_state:
st.session_state.history = "" # Stores past Q&A for memory
if "scraping_done" not in st.session_state:
st.session_state.scraping_done = False
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
# Run scraper
if run_scraper:
st.write("Fetching and processing URLs... This may take a while.")
split_docs = run_asyncio_coroutine(process_urls(urls.split("\n")))
st.session_state.vector_store = initialize_vector_store(split_docs)
st.session_state.scraping_done = True
st.success("Scraping and processing completed!")
# β
Clear chat button
if st.button("Clear Chat"):
st.session_state.messages = [] # Reset message history
st.session_state.history = "" # Reset history tracking
st.success("Chat cleared!")
# Ensuring chat only enables after scraping
if not st.session_state.scraping_done:
st.warning("Scrape some data first to enable chat!")
else:
st.write("### Chat With WebGPT π¬")
# Display chat history
for message in st.session_state.messages:
role, text = message["role"], message["text"]
with st.chat_message(role):
st.write(text)
# Takes in user input
user_query = st.chat_input("Ask a question...")
if user_query:
st.session_state.messages.append({"role": "user", "text": user_query})
with st.chat_message("user"):
st.write(user_query)
user_query_cleaned = clean_input(user_query)
response = "" # Default value for response
source_url = "" # Default value for source url
# Check for small talk responses
if user_query_cleaned in small_talks:
response = small_talks[user_query_cleaned]
source_url = "Knowledge base" # Small talk comes from the knowledge base
else:
# β
Setup retriever (with a similarity threshold or top-k retrieval)
retriever = st.session_state.vector_store.as_retriever(
search_kwargs={'k': 5}
)
# β
Retrieve context
retrieved_docs = retriever.invoke(user_query_cleaned)
retrieved_text = " ".join([doc.page_content for doc in retrieved_docs])
# β
Define Langchain PromptTemplate properly
system_prompt_template = PromptTemplate(
input_variables=["context", "query"],
template="""
You are WebGPT, an AI assistant for question-answering tasks that **only answers questions based on the provided context**.
- Understand the context {context} first and provide a relevant answer.
- If the answer is **not** found in the Context, reply with: "I can't find your request in the provided context."
- If the question is **unrelated** to the Context, reply with: "I can't answer that. do not generate responses."
- **Do not** use external knowledge, assumptions, or filler responses. Stick to the context provided.
- Keep responses clear, concise, and relevant to the userβs query.
Context:
{context}
Now, answer the user's question:
{input}
"""
)
# β
Generate prompt with retrieved context & user query
final_prompt = system_prompt_template.format(
context=retrieved_text,
input=user_query_cleaned
)
# β
Create chains (ensure the prompt is correct)
scraper_chain = create_stuff_documents_chain(llm=llm, prompt=system_prompt_template)
llm_chain = create_retrieval_chain(retriever, scraper_chain)
# β
Process response and source
if retrieved_docs:
try:
response_data = llm_chain.invoke({"context": retrieved_text, "input": user_query_cleaned})
response = response_data.get("answer", "").strip()
source_url = retrieved_docs[0].metadata.get("source", "Unknown")
# Fallback if response is still empty
if not response:
response = "I can't find your request in the provided context."
source_url = "No source found"
except Exception as e:
response = f"Error generating response: {str(e)}"
source_url = "Error"
else:
response = "I can't find your request in the provided context."
source_url = "No source found"
# β
Track history & update session state
history_text = "\n".join(
[f"User: {msg['text']}" if msg["role"] == "user" else f"AI: {msg['text']}" for msg in st.session_state.messages]
)
st.session_state.history = history_text
# β
Format and display response
formatted_response = f"**Answer:** {response}"
if response != "I can't find your request in the provided context." and source_url:
formatted_response += f"\n\n**Source:** {source_url}"
st.session_state.messages.append({"role": "assistant", "text": formatted_response})
with st.chat_message("assistant"):
st.write(formatted_response)
|