File size: 12,239 Bytes
35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f ffe502f 35fb63f c2e6cab 35fb63f c2e6cab ffe502f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab e7e3a28 c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f e7e3a28 35fb63f e7e3a28 35fb63f e7e3a28 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f c2e6cab 35fb63f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# , get_pinecone_vectorstore, find_similar_vectors
from climateqa.engine.vectorstore import build_vectores_stores, get_PDF_Names_from_GCP, get_categories_files
from climateqa.engine.text_retriever import ClimateQARetriever
from climateqa.engine.rag import make_rag_chain
from climateqa.engine.llm import get_llm
from utils import create_user_id
from datetime import datetime
import json
import re
import gradio as gr
from sentence_transformers import CrossEncoder
reranker = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
# Load environment variables in local mode
try:
from dotenv import load_dotenv
load_dotenv()
except Exception as e:
pass
# Set up Gradio Theme
theme = gr.themes.Soft(
primary_hue="yellow",
secondary_hue="orange",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif",
"system-ui", "sans-serif"],
)
init_prompt = ""
system_template = {
"role": "system",
"content": init_prompt,
}
user_id = create_user_id()
list_categorie = get_categories_files()
categories=list_categorie["AllCat"]
def parse_output_llm_with_sources(output):
# Split the content into a list of text and "[Doc X]" references
content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
parts = []
for part in content_parts:
if part.startswith("Doc"):
subparts = part.split(",")
subparts = [subpart.lower().replace("doc", "").strip()
for subpart in subparts]
subparts = [f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup style="color:#FFC000 !important;">({
subpart})</sup></span></a>""" for subpart in subparts]
parts.append("".join(subparts))
else:
parts.append(part)
content_parts = "".join(parts)
return content_parts
def serialize_docs(docs):
new_docs = []
for doc in docs:
new_doc = {}
new_doc["page_content"] = doc.page_content
new_doc["metadata"] = doc.metadata
new_docs.append(new_doc)
return new_docs
# Create vectorstore and retriever
vectorstore = build_vectores_stores("./sources")
llm = get_llm(provider="openai", max_tokens=1024, temperature=0.0)
async def chat(query, history, categories, src_nb_max, src_pertinence):
"""taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
(messages in gradio format, messages in langchain format, source documents)"""
print(f">> NEW QUESTION : {query} -> sources max:{src_nb_max} - pertience: {src_pertinence}")
filter = None
if len(categories):
filter={ "$or" : [] }
for cat in categories:
for fich in list_categorie[cat]:
filter["$or"].append({"ax_name": fich})
print( ">> Filter :" + str(filter) )
print( ">> nb sources :" + str(src_nb_max) )
print( ">> pertinence :" + str(src_pertinence) )
retriever = ClimateQARetriever(
vectorstore=vectorstore, sources=["Custom"], reports=[],
threshold=src_pertinence, k_total=src_nb_max, filter=filter
)
rag_chain = make_rag_chain(retriever, llm)
inputs = {"query": query, "audience": None}
result = rag_chain.astream_log(inputs)
path_reformulation = "/logs/reformulation/final_output"
path_keywords = "/logs/keywords/final_output"
path_retriever = "/logs/find_documents/final_output"
path_answer = "/logs/answer/streamed_output_str/-"
docs_html = ""
output_query = ""
output_language = ""
output_keywords = ""
gallery = []
try:
async for op in result:
op = op.ops[0]
if op['path'] == path_reformulation: # reforulated question
try:
output_language = op['value']["language"] # str
output_query = op["value"]["question"]
except Exception as e:
raise gr.Error(f"ClimateQ&A Error: {e} - The error has been noted, try another question and if the error remains, you can contact us :)")
if op["path"] == path_keywords:
try:
output_keywords = op['value']["keywords"] # str
output_keywords = " AND ".join(output_keywords)
except Exception as e:
pass
elif op['path'] == path_retriever: # documents
try:
docs = op['value']['docs'] # List[Document]
docs_html = []
for i, d in enumerate(docs, 1):
docs_html.append(make_html_source(d, i))
docs_html = "".join(docs_html)
except TypeError:
print("No documents found")
print("op: ", op)
continue
elif op['path'] == path_answer: # final answer
new_token = op['value'] # str
# time.sleep(0.01)
previous_answer = history[-1][1]
previous_answer = previous_answer if previous_answer is not None else ""
answer_yet = previous_answer + new_token
answer_yet = parse_output_llm_with_sources(answer_yet)
history[-1] = (query, answer_yet)
else:
continue
history = [tuple(x) for x in history]
yield history, docs_html, output_query, output_language, gallery, output_query, output_keywords
except Exception as e:
raise gr.Error(f"{e}")
timestamp = str(datetime.now().timestamp())
log_file = "logs/" + timestamp + ".json"
prompt = history[-1][0]
logs = {
"user_id": str(user_id),
"prompt": prompt,
"query": prompt,
"question": output_query,
"sources": ["Custom"],
"docs": serialize_docs(docs),
"answer": history[-1][1],
"time": timestamp,
}
#log_locally(log_file, logs)
yield history, docs_html, output_query, output_language, gallery, output_query, output_keywords
def make_html_source(source, i):
# Prépare le contenu HTML pour un fichier texte
text_content = source.page_content.strip()
meta = source.metadata
# Nom de la source
name = f"<b>Document {i}</b>"
# Contenu HTML de la carte
card = f"""
<div class="card" id="doc{i}">
<div class="card-content">
<div>
<div style="float:right;width 10%;position:relative;top:0px">
<a href='{meta['ax_url']}' target='_blank'><img style="width:20px" src='/file/assets/download.png' /></a>
</div>
<div>
<h2>Extrait {i} (Score:{float(meta['similarity_score'])})</h2>
<h2> {meta['ax_name']} - Page {int(meta['ax_page'])}</h2>
</div>
</div>
<p>{text_content}</p>
</div>
<!-- <div class="card-footer">
<span>{name}</span>
</div> -->
</div>
"""
return card
def log_locally(file, logs):
# Convertit les logs en format JSON
logs_json = json.dumps(logs)
# Écrit les logs dans un fichier local
with open(file, 'w') as f:
f.write(logs_json)
# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------
init_prompt = """
Hello, I am Clara, an AI Assistant created by Axionable. My purpose is to answer your questions using the provided extracted passages, context, and guidelines.
❓ How to interact with Clara
Ask your question: You can ask me anything you want to know. I'll provide an answer based on the extracted passages and other relevant sources.
Response structure: I aim to provide clear and structured answers using the given data.
Guidelines: I follow specific guidelines to ensure that my responses are accurate and useful.
⚠️ Limitations
Though I do my best to help, there might be times when my responses are incorrect or incomplete. If that happens, please feel free to ask for more information or provide feedback to help improve my performance.
What would you like to know today?
"""
with gr.Blocks(title="CLARA", css="style.css", theme=theme, elem_id="main-component", elem_classes="ax_background") as demo:
gr.HTML("""
<img style="width:100px" src="file/assets/axionable.svg"/>
""", elem_classes="logo-axio ")
# TAB Clara
with gr.Tab("CLARA"):
with gr.Row(elem_id="chatbot-row"):
with gr.Column(scale=2):
chatbot = gr.Chatbot(
value=[(None, init_prompt)],
show_copy_button=True, show_label=False, elem_id="chatbot", layout="panel",
avatar_images=(None, "assets/logo4.png"))
with gr.Row(elem_id="input-message"):
textbox = gr.Textbox(placeholder="Posez votre question", show_label=False,
scale=7, lines=1, interactive=True, elem_id="input-textbox")
with gr.Column(scale=1, variant="panel", elem_id="right-panel"):
# with gr.Column(scale=1, elem_id="tab-citations"):
# gr.HTML("<p>Sources</p>")
# slider = gr.Slider(1, 10, value=src_nb_max, step=1, label="nb max", interactive=True, elem_id="source-nb-max")
# slider_p = gr.Slider(0.0, 1.0, value=src_pertinence, step=0.01, label="pertinence", interactive=True, elem_id="source-pertinence")
# sources_textbox = gr.HTML(
# show_label=False, elem_id="sources-textbox")
# docs_textbox = gr.State("")
# l'object tabs est necessaire actuellement
# J'ai l'impression qu'il est utiliser pour freezre les contenu des tabs
# pendant que l'ia gènère une reponse ..
with gr.Tabs() as tabs:
# None
with gr.Tab("sources"):
sources_textbox = gr.HTML(
show_label=False, elem_id="sources-textbox")
docs_textbox = gr.State("")
with gr.Tab("filtres"):
cat_sel = gr.CheckboxGroup(categories,label="Catégories")
slider = gr.Slider(1, 10, value=7, step=1, label="nb max", interactive=True, elem_id="source-nb-max")
slider_p = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="pertinence", interactive=True, elem_id="source-pertinence")
# TAB A propos
with gr.Tab("À propos", elem_classes="max-height other-tabs"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
("CLARA (Climate LLM for Adaptation & Risks Answers) by [Axionable](https://www.axionable.com/)"
"– Fork de [ClimateQ&A](https://huggingface.co/spaces/Ekimetrics/climate-question-answering/tree/main)"), elem_classes="a-propos")
# # TAB Configuration
# with gr.Tab("Configuration"):
#
# with gr.Row(elem_id="config-row"):
# with gr.Column(scale=1):
#
# for pdfName in get_PDF_Names_from_GCP():
# gr.Markdown( pdfName, elem_classes="a-propos")
def start_chat(query, history):
history = history + [(query, None)]
history = [tuple(x) for x in history]
return (gr.update(interactive=False), gr.update(selected=1), history)
def finish_chat():
return (gr.update(interactive=True, value=""))
(textbox
.submit(start_chat, [textbox, chatbot], [textbox, tabs, chatbot], queue=False, api_name="start_chat_textbox")
.then(chat, [textbox, chatbot, cat_sel, slider, slider_p], [chatbot, sources_textbox], concurrency_limit=8, api_name="chat_textbox")
.then(finish_chat, None, [textbox], api_name="finish_chat_textbox")
)
demo.queue()
demo.launch(allowed_paths=["assets/download.png",
"assets/logo4.png",
"assets/axionable.svg"],favicon_path="assets/logo4.png")
|