File size: 14,690 Bytes
2e8087a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
from flask import Flask, render_template_string

import warnings
warnings.filterwarnings('ignore')

import pandas as pd
import numpy as np
import plotly.express as px
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')

import seaborn as sns

sns.set_style('whitegrid')

import panel as pn
from panel.interact import interact
pn.extension('plotly') # Interactive tables

import hvplot.pandas # Interactive dataframes

import holoviews as hv
from bokeh.events import Event
hv.extension('bokeh')

import os
os.environ['BOKEH_ALLOW_WS_ORIGIN'] = 'localhost:5006'

from bokeh.embed import server_document
import subprocess

df = pd.read_csv("data\StudentsPerformance.csv")
numeric_features = ['math score', 'reading score', 'writing score']
categoric_features = ['gender', 'race/ethnicity', 'parental level of education', 'lunch', 'test preparation course']
df['pass'] = df.apply(lambda row: 1 if row['math score'] >= 60 and row['reading score'] >= 60 and row['writing score'] >= 60 else 0, axis=1)


from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet, LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC

import dashboard
from dashboard.plots import table_plotly
from dashboard.plots import pie_quali 
from dashboard.plots import histogram_quali 
from dashboard.plots import boxplot_quali_quanti 
from dashboard.plots import scatter_quanti_quanti
from dashboard.plots import plotting_target_feature
from dashboard.plots import corr_heatmap
from dashboard.plots import qqplot
from dashboard.plots import hist_residual
from dashboard.plots import qqplot_residual
from dashboard.plots import residual_fitted
from dashboard.plots import residual_leverage
from dashboard.plots import bivar_quanti_plot
from dashboard.plots import cross_heatmap
from dashboard.plots import ols_resid_plot
from dashboard.plots import confusion_matrix_heatmap
from dashboard.plots import plot_roc


from dashboard.tables import describe_quali_quanti
from dashboard.tables import filtered_dataframe
from dashboard.tables import evaluate_regression_model
from dashboard.tables import cross_tab
from dashboard.tables import chi2_tab
from dashboard.tables import report_to_df


from dashboard.model import model_history
from dashboard.model import model_cl_history

pn.config.sizing_mode = "stretch_width"


reg_list = [
    LinearRegression,
    Ridge,
    Lasso,
    ElasticNet
]

cl_list= [
    LogisticRegression,
    RandomForestClassifier,
    KNeighborsClassifier,
    SVC
]

##### Create widgets

### Exploration widgets (Page 1)

# Dataset
checked_columns = ['lunch', 'race/ethnicity','test_preparation_course','math score','reading score','writing score','target_name']
checkboxes = {col: pn.widgets.Checkbox(name=col, value=True) if col in checked_columns else  pn.widgets.Checkbox(name=col, value=False) for col in df.columns}

# Histogram
count = pn.widgets.Select(name='feature',options=[col for col in df.columns], value='parental level of education')

# Scatter plot 
abscisse_scatter = pn.widgets.Select(name='x', options=numeric_features, value='reading score')
ordonnee_scatter = pn.widgets.Select(name='y', options=numeric_features, value='writing score')
dashboard_fit_line_checkbox = pn.widgets.Checkbox(name='fit line')

# Box plot
quanti = pn.widgets.Select(name='numeric feature', options=numeric_features)
quali = pn.widgets.Select(name='categorical feature', options=categoric_features, value='parental level of education')

# Target Plot
quali_target = pn.widgets.Select(name='categorical feature', options=categoric_features, value='parental level of education')

### Modeling Widget (Page 2)

# Regression
target_widget =  pn.widgets.Select(name='target', options=numeric_features, value='writing score')
model_name_widget = pn.widgets.Select(name='model', options=reg_list, value=LinearRegression)


# Classification
model_name_cl_widget = pn.widgets.Select(name='classification model', options=cl_list, value=LogisticRegression)
color_confusion = pn.widgets.Select(name='Matrix color', options=px.colors.named_colorscales(), value='bupu')

### Analysis Widget (Page 3)

# Quanti/Quanti
color1 = pn.widgets.Select(name='color', options=px.colors.named_colorscales(), value='magma')
quanti1_corr = pn.widgets.Select(name='x',options=numeric_features, value = 'reading score')
quanti2_corr = pn.widgets.Select(name='y',options=numeric_features, value = 'writing score')

# Quali/Quali
color2 = pn.widgets.Select(name='color', options=px.colors.named_colorscales(), value='redor')
quali1_cross = pn.widgets.Select(name='quali 1',options=categoric_features, value = 'parental level of education')
quali2_cross = pn.widgets.Select(name='quali 2',options=categoric_features, value = 'lunch')


# Q-Q Plot
quanti_qq = pn.widgets.Select(name='numeric feature', options=numeric_features)
quali_qq = pn.widgets.Select(name='categorical feature', options=categoric_features, value='parental level of education')
modality_qq = pn.widgets.Select(name='modality', options=df[quali_qq.params.args[0].value].unique().tolist())


def update_modality_options(event):
    selected_quali = quali_qq.value
    selected_modality = modality_qq.value
    modality_qq.options = df[selected_quali].unique().tolist()
    if selected_modality not in modality_qq.options:
        modality_qq.value = modality_qq.options[0]
    else:
        modality_qq.value = selected_modality

quali_qq.param.watch(update_modality_options, 'value')


##### Define reactive elements

### Reactive elements for Exploration (Page 1)

dataset = pn.bind(filtered_dataframe, df=df, **checkboxes)
histogram = pn.bind(histogram_quali,quali=count,df=df)
scatter_plot = pn.bind(scatter_quanti_quanti, x=abscisse_scatter, y=ordonnee_scatter, df=df, checkbox=dashboard_fit_line_checkbox)
box_plot = pn.bind(boxplot_quali_quanti, quanti=quanti, quali=quali, df=df)
describe_table = pn.bind(describe_quali_quanti, quali=quali, quanti=quanti, df=df)
target_plot = pn.bind(plotting_target_feature, quali=quali_target,df=df)


### Reactive elements for Modeling (Page 2)

# Regression

def update_reg_history(target, model):
    return model_history(df=df, target=target, model=model)

reg_history = pn.bind(update_reg_history, target=target_widget, model=model_name_widget)

evaluate_reg_table = pn.bind(evaluate_regression_model,history=reg_history)
residual_fitted_plot = pn.bind(residual_fitted, history=reg_history)
qqplot_residual_plot = pn.bind(qqplot_residual, history=reg_history)
scale_location_plot = pn.bind(residual_fitted, history=reg_history, root=True)
residual_leverage_plot = pn.bind(residual_leverage, history=reg_history)

# Classification
def update_cl_history(model_cl):
    return model_cl_history(df=df, model_cl=model_cl)

cl_classification = pn.bind(update_cl_history, model_cl=model_name_cl_widget)
evaluate_cl_table = pn.bind(report_to_df,classification=cl_classification)

confusion_plot = pn.bind(confusion_matrix_heatmap, classification=cl_classification,color=color_confusion)

roc = pn.bind(plot_roc, classification=cl_classification)

### Reactive elements for Analysis (Page 3)
corr_plot = pn.bind(corr_heatmap, df=df, quanti1=quanti1_corr,quanti2=quanti2_corr, color=color1)
joint_plot = pn.bind(bivar_quanti_plot, df=df, quanti1=quanti1_corr, quanti2=quanti2_corr)

cross_table = pn.bind(cross_tab, df=df, quali1=quali1_cross, quali2=quali2_cross)
chi2_table = pn.bind(chi2_tab, df=df, quali1=quali1_cross, quali2=quali2_cross)
cross_heatmap_plot = pn.bind(cross_heatmap, df=df, quali1=quali1_cross, quali2=quali2_cross, color=color2)

box_plot2 = pn.bind(boxplot_quali_quanti, quanti=quanti_qq, quali=quali_qq, df=df)
qq_plot = pn.bind(qqplot, quali=quali_qq, quanti=quanti_qq, modality=modality_qq, df=df)
ols_plot = pn.bind(ols_resid_plot, df=df, quanti=quanti_qq, quali=quali_qq)

##### Define Sidebar

### Exploration Sidebar (Page 1)

# Cards
data_card = pn.Card(pn.Column(*checkboxes.values()), title='Data')
histogram_card = pn.Card(pn.Column(count), title='Histogram')
scatter_card = pn.Card(pn.Column(dashboard_fit_line_checkbox, abscisse_scatter, ordonnee_scatter), title='Scatter Plot')
box_card = pn.Card(pn.Column(quanti, quali), title='Box Plot')
target_card = pn.Card(pn.Column(quali_target), title='Target Plot')


# Sidebar 
exploration_sidebar = pn.Column('# Parameters\n This section changes parameters for exploration plots',
    data_card,
    histogram_card,
    scatter_card,
    box_card,
    target_card,
    sizing_mode='stretch_width',
)

### Modeling Sidebar (Page 2)

# Cards
regression_card = pn.Card(pn.Column(model_name_widget,target_widget), title='Regression',sizing_mode = "stretch_width")

classification_card = pn.Card(pn.Column(model_name_cl_widget, color_confusion), title='Classification',sizing_mode = "stretch_width")



# Sidebar 
modeling_sidebar = pn.Column('# Parameters\n This section changes parameters for modeling plots',
    regression_card,
    classification_card,
    sizing_mode='stretch_width'
)


### Analysis Sidebar (Page 3)

# Cards
quanti_quanti_card = pn.Card(pn.Column(color1,quanti1_corr,quanti2_corr), title='Quantitative vs Quantitative')
quali_quali_card = pn.Card(pn.Column(color2,quali1_cross, quali2_cross), title='Qualitative vs Qualitative')
quali_quanti_card = pn.Card(pn.Column(quanti_qq,pn.Column(quali_qq, modality_qq)), title='Qualitative vs Quantitative')

# Sidebar 
analysis_sidebar = pn.Column('# Parameters\n This section changes parameters for further analysis plots',
    quanti_quanti_card,
    quali_quali_card,
    quali_quanti_card,
    sizing_mode='stretch_width'
)

##### Define Main

### Main Exploration (Page 1)

# Cards
description = "This dataset contains information about the performance of students in various subjects. The data includes their scores in math, reading, and writing, as well as their gender, race/ethnicity, parental education, and whether they qualify for free/reduced lunch."
description_card = pn.Card(description, title='Description')

dataset_card = pn.Card(pn.Row(pn.Column('# Data ', description),
                            pn.Column(dataset)),
                    title='Description')

boxplot_card = pn.Row(pn.Card(describe_table, title='Describe Table'),
                    pn.Card(box_plot, title='Box Plot'))


scatter_hist_card = pn.Row(pn.Card(histogram, title='Histogram'), 
                        pn.Card(scatter_plot, title='Scatter Plot'))
target_card = pn.Card(target_plot, title='Target Plot')

# Content
exploration_main_content = pn.Column(
        pn.Row(dataset_card),
        pn.Row(scatter_hist_card),
        pn.Row(boxplot_card),
        pn.Row(target_card),
        sizing_mode='stretch_width')


### Main Modeling (Page 2)

# Cards
evaluate_table_card = pn.Card(evaluate_reg_table, title="Evaluation")
residual_fitted_card = pn.Card(residual_fitted_plot ,title="Residual Plot")
qqplot_residual_card = pn.Card(qqplot_residual_plot,title="Normal Q-Q")
scale_location_card = pn.Card(scale_location_plot, title="Scale Location")
residual_leverage_card = pn.Card(residual_leverage_plot, title="Residuals vs Leverage")

# Regroup cards
regression_card = pn.Card(pn.Row(evaluate_table_card),
                        pn.Row(residual_fitted_card,qqplot_residual_card),
                        pn.Row(scale_location_card,residual_leverage_card),      
                        title = 'Regression')

## Classification

evaluate_cl_card = pn.Card(evaluate_cl_table, title="Evaluation Table")
confusion_card = pn.Card(confusion_plot, title="Confusion Matrix")
roc_card = pn.Card(roc, title='ROC')

classification_card = pn.Card(pn.Row(evaluate_cl_card),
                            pn.Row(confusion_card,roc_card),
                            title='Classification')


# Content
modeling_main_content = pn.Column(pn.Row(regression_card),
                                pn.Row(classification_card),                                  
                                sizing_mode='stretch_width')


### Main Analysis(Page 3)

# Cards
corr_card = pn.Card(corr_plot, title='Person Correlation Matrix')
joint_card = pn.Card(joint_plot, title='Bivariate Plot')

cross_card = pn.Card(cross_table, title='Contingency Table')
chi2_card = pn.Card(chi2_table, title='Chi2 Test')
cross_heatmap_card = pn.Card(cross_heatmap_plot, title='Contingency Heatmap')

boxplot_card = pn.Card(box_plot2, title='Box Plot')
qq_card = pn.Card(qq_plot, title='Q-Q Plot')
ols_card = pn.Card(ols_plot, title='OLS Residuals')


quanti_quanti_card = pn.Card(pn.Row(corr_card,joint_card),
                            title=f'Statistic Dependency {quanti1_corr.params.args[0].value} vs {quanti2_corr.params.args[0].value} (quantitative/quantitative)')

quali_quali_card = pn.Card(pn.Row(pn.Column(cross_card,chi2_card),
                                cross_heatmap_card),
                        title=f'Statistic Dependency {quali1_cross.params.args[0].value} vs {quali2_cross.params.args[0].value} (qualitative/qualitative)')


quali_quanti_card = pn.Card(pn.Row(boxplot_card),
                            pn.Row(ols_card,qq_card),
                            title=f'Statistic Dependency {quali_qq.params.args[0].value} vs {quanti_qq.params.args[0].value} (qualitative/quantitative)')


# Content
analysis_main_content = pn.Column(pn.Row(quanti_quanti_card),
                                pn.Row(quali_quali_card),
                                pn.Row(quali_quanti_card), 
                                sizing_mode='stretch_width')


##### Create Callback to change sidebar content

main_tabs = pn.Tabs(('Exploration', exploration_main_content),
                    ('Modeling', modeling_main_content),
                    ('Further Analysis', analysis_main_content))

def on_tab_change(event):

    if event.new == 0:

        exploration_sidebar.visible = True
        modeling_sidebar.visible = False
        analysis_sidebar.visible = False

    elif event.new == 1:


        exploration_sidebar.visible = False
        modeling_sidebar.visible = True
        analysis_sidebar.visible = False


    else:

        exploration_sidebar.visible = False
        modeling_sidebar.visible = False
        analysis_sidebar.visible = True


main_tabs.param.watch(on_tab_change, 'active')

##### Layout

template = pn.template.VanillaTemplate(
    
    # title
    title = "Student Performance in Exams",
    
    # sidebar
    sidebar = pn.Column(exploration_sidebar, modeling_sidebar, analysis_sidebar, sizing_mode='stretch_width'),
    
    # main
    main = main_tabs
)

#template.header.append(dark_mode_toggle)
##### Show Dashboard


template.servable()