Spaces:
Runtime error
Runtime error
File size: 14,690 Bytes
2e8087a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
from flask import Flask, render_template_string
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
import plotly.express as px
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')
import seaborn as sns
sns.set_style('whitegrid')
import panel as pn
from panel.interact import interact
pn.extension('plotly') # Interactive tables
import hvplot.pandas # Interactive dataframes
import holoviews as hv
from bokeh.events import Event
hv.extension('bokeh')
import os
os.environ['BOKEH_ALLOW_WS_ORIGIN'] = 'localhost:5006'
from bokeh.embed import server_document
import subprocess
df = pd.read_csv("data\StudentsPerformance.csv")
numeric_features = ['math score', 'reading score', 'writing score']
categoric_features = ['gender', 'race/ethnicity', 'parental level of education', 'lunch', 'test preparation course']
df['pass'] = df.apply(lambda row: 1 if row['math score'] >= 60 and row['reading score'] >= 60 and row['writing score'] >= 60 else 0, axis=1)
from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet, LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
import dashboard
from dashboard.plots import table_plotly
from dashboard.plots import pie_quali
from dashboard.plots import histogram_quali
from dashboard.plots import boxplot_quali_quanti
from dashboard.plots import scatter_quanti_quanti
from dashboard.plots import plotting_target_feature
from dashboard.plots import corr_heatmap
from dashboard.plots import qqplot
from dashboard.plots import hist_residual
from dashboard.plots import qqplot_residual
from dashboard.plots import residual_fitted
from dashboard.plots import residual_leverage
from dashboard.plots import bivar_quanti_plot
from dashboard.plots import cross_heatmap
from dashboard.plots import ols_resid_plot
from dashboard.plots import confusion_matrix_heatmap
from dashboard.plots import plot_roc
from dashboard.tables import describe_quali_quanti
from dashboard.tables import filtered_dataframe
from dashboard.tables import evaluate_regression_model
from dashboard.tables import cross_tab
from dashboard.tables import chi2_tab
from dashboard.tables import report_to_df
from dashboard.model import model_history
from dashboard.model import model_cl_history
pn.config.sizing_mode = "stretch_width"
reg_list = [
LinearRegression,
Ridge,
Lasso,
ElasticNet
]
cl_list= [
LogisticRegression,
RandomForestClassifier,
KNeighborsClassifier,
SVC
]
##### Create widgets
### Exploration widgets (Page 1)
# Dataset
checked_columns = ['lunch', 'race/ethnicity','test_preparation_course','math score','reading score','writing score','target_name']
checkboxes = {col: pn.widgets.Checkbox(name=col, value=True) if col in checked_columns else pn.widgets.Checkbox(name=col, value=False) for col in df.columns}
# Histogram
count = pn.widgets.Select(name='feature',options=[col for col in df.columns], value='parental level of education')
# Scatter plot
abscisse_scatter = pn.widgets.Select(name='x', options=numeric_features, value='reading score')
ordonnee_scatter = pn.widgets.Select(name='y', options=numeric_features, value='writing score')
dashboard_fit_line_checkbox = pn.widgets.Checkbox(name='fit line')
# Box plot
quanti = pn.widgets.Select(name='numeric feature', options=numeric_features)
quali = pn.widgets.Select(name='categorical feature', options=categoric_features, value='parental level of education')
# Target Plot
quali_target = pn.widgets.Select(name='categorical feature', options=categoric_features, value='parental level of education')
### Modeling Widget (Page 2)
# Regression
target_widget = pn.widgets.Select(name='target', options=numeric_features, value='writing score')
model_name_widget = pn.widgets.Select(name='model', options=reg_list, value=LinearRegression)
# Classification
model_name_cl_widget = pn.widgets.Select(name='classification model', options=cl_list, value=LogisticRegression)
color_confusion = pn.widgets.Select(name='Matrix color', options=px.colors.named_colorscales(), value='bupu')
### Analysis Widget (Page 3)
# Quanti/Quanti
color1 = pn.widgets.Select(name='color', options=px.colors.named_colorscales(), value='magma')
quanti1_corr = pn.widgets.Select(name='x',options=numeric_features, value = 'reading score')
quanti2_corr = pn.widgets.Select(name='y',options=numeric_features, value = 'writing score')
# Quali/Quali
color2 = pn.widgets.Select(name='color', options=px.colors.named_colorscales(), value='redor')
quali1_cross = pn.widgets.Select(name='quali 1',options=categoric_features, value = 'parental level of education')
quali2_cross = pn.widgets.Select(name='quali 2',options=categoric_features, value = 'lunch')
# Q-Q Plot
quanti_qq = pn.widgets.Select(name='numeric feature', options=numeric_features)
quali_qq = pn.widgets.Select(name='categorical feature', options=categoric_features, value='parental level of education')
modality_qq = pn.widgets.Select(name='modality', options=df[quali_qq.params.args[0].value].unique().tolist())
def update_modality_options(event):
selected_quali = quali_qq.value
selected_modality = modality_qq.value
modality_qq.options = df[selected_quali].unique().tolist()
if selected_modality not in modality_qq.options:
modality_qq.value = modality_qq.options[0]
else:
modality_qq.value = selected_modality
quali_qq.param.watch(update_modality_options, 'value')
##### Define reactive elements
### Reactive elements for Exploration (Page 1)
dataset = pn.bind(filtered_dataframe, df=df, **checkboxes)
histogram = pn.bind(histogram_quali,quali=count,df=df)
scatter_plot = pn.bind(scatter_quanti_quanti, x=abscisse_scatter, y=ordonnee_scatter, df=df, checkbox=dashboard_fit_line_checkbox)
box_plot = pn.bind(boxplot_quali_quanti, quanti=quanti, quali=quali, df=df)
describe_table = pn.bind(describe_quali_quanti, quali=quali, quanti=quanti, df=df)
target_plot = pn.bind(plotting_target_feature, quali=quali_target,df=df)
### Reactive elements for Modeling (Page 2)
# Regression
def update_reg_history(target, model):
return model_history(df=df, target=target, model=model)
reg_history = pn.bind(update_reg_history, target=target_widget, model=model_name_widget)
evaluate_reg_table = pn.bind(evaluate_regression_model,history=reg_history)
residual_fitted_plot = pn.bind(residual_fitted, history=reg_history)
qqplot_residual_plot = pn.bind(qqplot_residual, history=reg_history)
scale_location_plot = pn.bind(residual_fitted, history=reg_history, root=True)
residual_leverage_plot = pn.bind(residual_leverage, history=reg_history)
# Classification
def update_cl_history(model_cl):
return model_cl_history(df=df, model_cl=model_cl)
cl_classification = pn.bind(update_cl_history, model_cl=model_name_cl_widget)
evaluate_cl_table = pn.bind(report_to_df,classification=cl_classification)
confusion_plot = pn.bind(confusion_matrix_heatmap, classification=cl_classification,color=color_confusion)
roc = pn.bind(plot_roc, classification=cl_classification)
### Reactive elements for Analysis (Page 3)
corr_plot = pn.bind(corr_heatmap, df=df, quanti1=quanti1_corr,quanti2=quanti2_corr, color=color1)
joint_plot = pn.bind(bivar_quanti_plot, df=df, quanti1=quanti1_corr, quanti2=quanti2_corr)
cross_table = pn.bind(cross_tab, df=df, quali1=quali1_cross, quali2=quali2_cross)
chi2_table = pn.bind(chi2_tab, df=df, quali1=quali1_cross, quali2=quali2_cross)
cross_heatmap_plot = pn.bind(cross_heatmap, df=df, quali1=quali1_cross, quali2=quali2_cross, color=color2)
box_plot2 = pn.bind(boxplot_quali_quanti, quanti=quanti_qq, quali=quali_qq, df=df)
qq_plot = pn.bind(qqplot, quali=quali_qq, quanti=quanti_qq, modality=modality_qq, df=df)
ols_plot = pn.bind(ols_resid_plot, df=df, quanti=quanti_qq, quali=quali_qq)
##### Define Sidebar
### Exploration Sidebar (Page 1)
# Cards
data_card = pn.Card(pn.Column(*checkboxes.values()), title='Data')
histogram_card = pn.Card(pn.Column(count), title='Histogram')
scatter_card = pn.Card(pn.Column(dashboard_fit_line_checkbox, abscisse_scatter, ordonnee_scatter), title='Scatter Plot')
box_card = pn.Card(pn.Column(quanti, quali), title='Box Plot')
target_card = pn.Card(pn.Column(quali_target), title='Target Plot')
# Sidebar
exploration_sidebar = pn.Column('# Parameters\n This section changes parameters for exploration plots',
data_card,
histogram_card,
scatter_card,
box_card,
target_card,
sizing_mode='stretch_width',
)
### Modeling Sidebar (Page 2)
# Cards
regression_card = pn.Card(pn.Column(model_name_widget,target_widget), title='Regression',sizing_mode = "stretch_width")
classification_card = pn.Card(pn.Column(model_name_cl_widget, color_confusion), title='Classification',sizing_mode = "stretch_width")
# Sidebar
modeling_sidebar = pn.Column('# Parameters\n This section changes parameters for modeling plots',
regression_card,
classification_card,
sizing_mode='stretch_width'
)
### Analysis Sidebar (Page 3)
# Cards
quanti_quanti_card = pn.Card(pn.Column(color1,quanti1_corr,quanti2_corr), title='Quantitative vs Quantitative')
quali_quali_card = pn.Card(pn.Column(color2,quali1_cross, quali2_cross), title='Qualitative vs Qualitative')
quali_quanti_card = pn.Card(pn.Column(quanti_qq,pn.Column(quali_qq, modality_qq)), title='Qualitative vs Quantitative')
# Sidebar
analysis_sidebar = pn.Column('# Parameters\n This section changes parameters for further analysis plots',
quanti_quanti_card,
quali_quali_card,
quali_quanti_card,
sizing_mode='stretch_width'
)
##### Define Main
### Main Exploration (Page 1)
# Cards
description = "This dataset contains information about the performance of students in various subjects. The data includes their scores in math, reading, and writing, as well as their gender, race/ethnicity, parental education, and whether they qualify for free/reduced lunch."
description_card = pn.Card(description, title='Description')
dataset_card = pn.Card(pn.Row(pn.Column('# Data ', description),
pn.Column(dataset)),
title='Description')
boxplot_card = pn.Row(pn.Card(describe_table, title='Describe Table'),
pn.Card(box_plot, title='Box Plot'))
scatter_hist_card = pn.Row(pn.Card(histogram, title='Histogram'),
pn.Card(scatter_plot, title='Scatter Plot'))
target_card = pn.Card(target_plot, title='Target Plot')
# Content
exploration_main_content = pn.Column(
pn.Row(dataset_card),
pn.Row(scatter_hist_card),
pn.Row(boxplot_card),
pn.Row(target_card),
sizing_mode='stretch_width')
### Main Modeling (Page 2)
# Cards
evaluate_table_card = pn.Card(evaluate_reg_table, title="Evaluation")
residual_fitted_card = pn.Card(residual_fitted_plot ,title="Residual Plot")
qqplot_residual_card = pn.Card(qqplot_residual_plot,title="Normal Q-Q")
scale_location_card = pn.Card(scale_location_plot, title="Scale Location")
residual_leverage_card = pn.Card(residual_leverage_plot, title="Residuals vs Leverage")
# Regroup cards
regression_card = pn.Card(pn.Row(evaluate_table_card),
pn.Row(residual_fitted_card,qqplot_residual_card),
pn.Row(scale_location_card,residual_leverage_card),
title = 'Regression')
## Classification
evaluate_cl_card = pn.Card(evaluate_cl_table, title="Evaluation Table")
confusion_card = pn.Card(confusion_plot, title="Confusion Matrix")
roc_card = pn.Card(roc, title='ROC')
classification_card = pn.Card(pn.Row(evaluate_cl_card),
pn.Row(confusion_card,roc_card),
title='Classification')
# Content
modeling_main_content = pn.Column(pn.Row(regression_card),
pn.Row(classification_card),
sizing_mode='stretch_width')
### Main Analysis(Page 3)
# Cards
corr_card = pn.Card(corr_plot, title='Person Correlation Matrix')
joint_card = pn.Card(joint_plot, title='Bivariate Plot')
cross_card = pn.Card(cross_table, title='Contingency Table')
chi2_card = pn.Card(chi2_table, title='Chi2 Test')
cross_heatmap_card = pn.Card(cross_heatmap_plot, title='Contingency Heatmap')
boxplot_card = pn.Card(box_plot2, title='Box Plot')
qq_card = pn.Card(qq_plot, title='Q-Q Plot')
ols_card = pn.Card(ols_plot, title='OLS Residuals')
quanti_quanti_card = pn.Card(pn.Row(corr_card,joint_card),
title=f'Statistic Dependency {quanti1_corr.params.args[0].value} vs {quanti2_corr.params.args[0].value} (quantitative/quantitative)')
quali_quali_card = pn.Card(pn.Row(pn.Column(cross_card,chi2_card),
cross_heatmap_card),
title=f'Statistic Dependency {quali1_cross.params.args[0].value} vs {quali2_cross.params.args[0].value} (qualitative/qualitative)')
quali_quanti_card = pn.Card(pn.Row(boxplot_card),
pn.Row(ols_card,qq_card),
title=f'Statistic Dependency {quali_qq.params.args[0].value} vs {quanti_qq.params.args[0].value} (qualitative/quantitative)')
# Content
analysis_main_content = pn.Column(pn.Row(quanti_quanti_card),
pn.Row(quali_quali_card),
pn.Row(quali_quanti_card),
sizing_mode='stretch_width')
##### Create Callback to change sidebar content
main_tabs = pn.Tabs(('Exploration', exploration_main_content),
('Modeling', modeling_main_content),
('Further Analysis', analysis_main_content))
def on_tab_change(event):
if event.new == 0:
exploration_sidebar.visible = True
modeling_sidebar.visible = False
analysis_sidebar.visible = False
elif event.new == 1:
exploration_sidebar.visible = False
modeling_sidebar.visible = True
analysis_sidebar.visible = False
else:
exploration_sidebar.visible = False
modeling_sidebar.visible = False
analysis_sidebar.visible = True
main_tabs.param.watch(on_tab_change, 'active')
##### Layout
template = pn.template.VanillaTemplate(
# title
title = "Student Performance in Exams",
# sidebar
sidebar = pn.Column(exploration_sidebar, modeling_sidebar, analysis_sidebar, sizing_mode='stretch_width'),
# main
main = main_tabs
)
#template.header.append(dark_mode_toggle)
##### Show Dashboard
template.servable()
|