File size: 667 Bytes
dd76183 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
import gradio as gr
from transformers import PegasusForConditionalGeneration
from transformers import PegasusTokenizer
from transformers import pipeline
model_name = "google/pegasus-xsum"
pegasus_tokenizer = PegasusTokenizer.from_pretrained(model_name)
def summarize(input_text):
nwords=len(input_text.split(" "))
# Define summarization pipeline
summarizer = pipeline("summarization", model=model_name, tokenizer=pegasus_tokenizer,min_length=int(nwords/10)+20, max_length=int(nwords/5+20), framework="pt")
summary=summarizer(input_text)[0]['summary_text']
return(summary)
gr.Interface(fn=summarize,inputs="textbox",outputs="textbox").launch(share="True"); |