Spaces:
Runtime error
Runtime error
File size: 5,229 Bytes
a0e2e84 efe0924 a0e2e84 5cf48e0 a0e2e84 efe0924 5cf48e0 efe0924 5cf48e0 a0e2e84 b38cab2 a0e2e84 b38cab2 a0e2e84 b38cab2 a0e2e84 b38cab2 a0e2e84 b38cab2 a0e2e84 b38cab2 a0e2e84 b38cab2 a0e2e84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import contextlib
import os
import gc
import random
import shutil
import time
import traceback
import zipfile
import filelock
import numpy as np
import pandas as pd
import torch
def set_seed(seed: int):
"""
Sets the seed of the entire notebook so results are the same every time we run.
This is for REPRODUCIBILITY.
"""
np.random.seed(seed)
random_state = np.random.RandomState(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['PYTHONHASHSEED'] = str(seed)
return random_state
def flatten_list(lis):
"""Given a list, possibly nested to any level, return it flattened."""
new_lis = []
for item in lis:
if type(item) == type([]):
new_lis.extend(flatten_list(item))
else:
new_lis.append(item)
return new_lis
def clear_torch_cache():
if torch.cuda.is_available:
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def system_info():
import psutil
system = {}
# https://stackoverflow.com/questions/48951136/plot-multiple-graphs-in-one-plot-using-tensorboard
# https://arshren.medium.com/monitoring-your-devices-in-python-5191d672f749
temps = psutil.sensors_temperatures(fahrenheit=False)
if 'coretemp' in temps:
coretemp = temps['coretemp']
temp_dict = {k.label: k.current for k in coretemp}
for k, v in temp_dict.items():
system['CPU_C/%s' % k] = v
# https://github.com/gpuopenanalytics/pynvml/blob/master/help_query_gpu.txt
from pynvml.smi import nvidia_smi
nvsmi = nvidia_smi.getInstance()
gpu_power_dict = {'W_gpu%d' % i: x['power_readings']['power_draw'] for i, x in
enumerate(nvsmi.DeviceQuery('power.draw')['gpu'])}
for k, v in gpu_power_dict.items():
system['GPU_W/%s' % k] = v
gpu_temp_dict = {'C_gpu%d' % i: x['temperature']['gpu_temp'] for i, x in
enumerate(nvsmi.DeviceQuery('temperature.gpu')['gpu'])}
for k, v in gpu_temp_dict.items():
system['GPU_C/%s' % k] = v
gpu_memory_free_dict = {'MiB_gpu%d' % i: x['fb_memory_usage']['free'] for i, x in
enumerate(nvsmi.DeviceQuery('memory.free')['gpu'])}
gpu_memory_total_dict = {'MiB_gpu%d' % i: x['fb_memory_usage']['total'] for i, x in
enumerate(nvsmi.DeviceQuery('memory.total')['gpu'])}
gpu_memory_frac_dict = {k: gpu_memory_free_dict[k] / gpu_memory_total_dict[k] for k in gpu_memory_total_dict}
for k, v in gpu_memory_frac_dict.items():
system[f'GPU_M/%s' % k] = v
return system
def system_info_print():
try:
df = pd.DataFrame.from_dict(system_info(), orient='index')
# avoid slamming GPUs
time.sleep(1)
return df.to_markdown()
except Exception as e:
return "Error: %s" % str(e)
def zip_data(root_dirs=None, zip_path='data.zip', base_dir='./'):
try:
return _zip_data(zip_path=zip_path, base_dir=base_dir, root_dirs=root_dirs)
except Exception as e:
traceback.print_exc()
print('Exception in zipping: %s' % str(e))
def _zip_data(root_dirs=None, zip_path='data.zip', base_dir='./'):
assert root_dirs is not None
with zipfile.ZipFile(zip_path, "w") as expt_zip:
for root_dir in root_dirs:
if root_dir is None:
continue
for root, d, files in os.walk(root_dir):
for file in files:
file_to_archive = os.path.join(root, file)
assert os.path.exists(file_to_archive)
path_to_archive = os.path.relpath(file_to_archive, base_dir)
expt_zip.write(filename=file_to_archive, arcname=path_to_archive)
return "data.zip"
def save_generate_output(output=None, base_model=None, save_dir=None):
try:
return _save_generate_output(output=output, base_model=base_model, save_dir=save_dir)
except Exception as e:
traceback.print_exc()
print('Exception in saving: %s' % str(e))
def _save_generate_output(output=None, base_model=None, save_dir=None):
"""
Save conversation to .json, row by row.
json_file_path is path to final JSON file. If not in ., then will attempt to make directories.
Appends if file exists
"""
assert save_dir, "save_dir must be provided"
if os.path.exists(save_dir) and not os.path.isdir(save_dir):
raise RuntimeError("save_dir already exists and is not a directory!")
os.makedirs(save_dir, exist_ok=True)
import json
if output[-10:] == '\n\n<human>:':
# remove trailing <human>:
output = output[:-10]
with filelock.FileLock("save_dir.lock"):
# lock logging in case have concurrency
with open(os.path.join(save_dir, "history.json"), "a") as f:
# just add [ at start, and ] at end, and have proper JSON dataset
f.write(
" " + json.dumps(
dict(text=output, time=time.ctime(), base_model=base_model)
) + ",\n"
)
|