File size: 65,320 Bytes
6bc5fb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-14T06:02:34.158602Z",
     "iopub.status.busy": "2025-03-14T06:02:34.158188Z",
     "iopub.status.idle": "2025-03-14T06:02:34.361502Z",
     "shell.execute_reply": "2025-03-14T06:02:34.360367Z",
     "shell.execute_reply.started": "2025-03-14T06:02:34.158571Z"
    }
   },
   "outputs": [],
   "source": [
    "# Importing HuggingFace Token\n",
    "from kaggle_secrets import UserSecretsClient\n",
    "user_secrets = UserSecretsClient()\n",
    "secret_value_0 = user_secrets.get_secret(\"HF_Token\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
    "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
    "execution": {
     "iopub.execute_input": "2025-03-14T06:02:34.363000Z",
     "iopub.status.busy": "2025-03-14T06:02:34.362718Z",
     "iopub.status.idle": "2025-03-14T06:12:26.502668Z",
     "shell.execute_reply": "2025-03-14T06:12:26.501655Z",
     "shell.execute_reply.started": "2025-03-14T06:02:34.362977Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using device: cuda\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7824a999787d4bd1b195d7d91c77b73d",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenizer_config.json:   0%|          | 0.00/48.0 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d429c8c5a09d44acabf466ce018c6bcd",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "vocab.txt:   0%|          | 0.00/232k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "0a455715281a4842b2b84fb392994a9a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenizer.json:   0%|          | 0.00/466k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "cb3a2c53b638478c9aebbcb91ba50d1a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "config.json:   0%|          | 0.00/570 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e7ab9075f9a542439774f2c2fba440a1",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model.safetensors:   0%|          | 0.00/440M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/90 - Average Loss: 5.6662\n",
      "Epoch 2/90 - Average Loss: 5.6118\n",
      "Epoch 3/90 - Average Loss: 5.5608\n",
      "Epoch 4/90 - Average Loss: 5.4642\n",
      "Epoch 5/90 - Average Loss: 5.3513\n",
      "Epoch 6/90 - Average Loss: 5.1811\n",
      "Epoch 7/90 - Average Loss: 5.0176\n",
      "Epoch 8/90 - Average Loss: 4.8236\n",
      "Epoch 9/90 - Average Loss: 4.6535\n",
      "Epoch 10/90 - Average Loss: 4.4724\n",
      "Epoch 11/90 - Average Loss: 4.3279\n",
      "Epoch 12/90 - Average Loss: 4.1504\n",
      "Epoch 13/90 - Average Loss: 4.0176\n",
      "Epoch 14/90 - Average Loss: 3.8612\n",
      "Epoch 15/90 - Average Loss: 3.7189\n",
      "Epoch 16/90 - Average Loss: 3.5748\n",
      "Epoch 17/90 - Average Loss: 3.4296\n",
      "Epoch 18/90 - Average Loss: 3.3193\n",
      "Epoch 19/90 - Average Loss: 3.1704\n",
      "Epoch 20/90 - Average Loss: 3.0567\n",
      "Epoch 21/90 - Average Loss: 2.9273\n",
      "Epoch 22/90 - Average Loss: 2.7933\n",
      "Epoch 23/90 - Average Loss: 2.6832\n",
      "Epoch 24/90 - Average Loss: 2.5414\n",
      "Epoch 25/90 - Average Loss: 2.4337\n",
      "Epoch 26/90 - Average Loss: 2.3230\n",
      "Epoch 27/90 - Average Loss: 2.2094\n",
      "Epoch 28/90 - Average Loss: 2.0913\n",
      "Epoch 29/90 - Average Loss: 1.9798\n",
      "Epoch 30/90 - Average Loss: 1.8935\n",
      "Epoch 31/90 - Average Loss: 1.7755\n",
      "Epoch 32/90 - Average Loss: 1.6802\n",
      "Epoch 33/90 - Average Loss: 1.5814\n",
      "Epoch 34/90 - Average Loss: 1.5013\n",
      "Epoch 35/90 - Average Loss: 1.4134\n",
      "Epoch 36/90 - Average Loss: 1.3328\n",
      "Epoch 37/90 - Average Loss: 1.2458\n",
      "Epoch 38/90 - Average Loss: 1.1845\n",
      "Epoch 39/90 - Average Loss: 1.1036\n",
      "Epoch 40/90 - Average Loss: 1.0327\n",
      "Epoch 41/90 - Average Loss: 0.9679\n",
      "Epoch 42/90 - Average Loss: 0.9215\n",
      "Epoch 43/90 - Average Loss: 0.8682\n",
      "Epoch 44/90 - Average Loss: 0.8089\n",
      "Epoch 45/90 - Average Loss: 0.7654\n",
      "Epoch 46/90 - Average Loss: 0.7181\n",
      "Epoch 47/90 - Average Loss: 0.6696\n",
      "Epoch 48/90 - Average Loss: 0.6318\n",
      "Epoch 49/90 - Average Loss: 0.5918\n",
      "Epoch 50/90 - Average Loss: 0.5542\n",
      "Epoch 51/90 - Average Loss: 0.5274\n",
      "Epoch 52/90 - Average Loss: 0.4944\n",
      "Epoch 53/90 - Average Loss: 0.4631\n",
      "Epoch 54/90 - Average Loss: 0.4428\n",
      "Epoch 55/90 - Average Loss: 0.4125\n",
      "Epoch 56/90 - Average Loss: 0.3950\n",
      "Epoch 57/90 - Average Loss: 0.3698\n",
      "Epoch 58/90 - Average Loss: 0.3491\n",
      "Epoch 59/90 - Average Loss: 0.3309\n",
      "Epoch 60/90 - Average Loss: 0.3142\n",
      "Epoch 61/90 - Average Loss: 0.2992\n",
      "Epoch 62/90 - Average Loss: 0.2829\n",
      "Epoch 63/90 - Average Loss: 0.2706\n",
      "Epoch 64/90 - Average Loss: 0.2552\n",
      "Epoch 65/90 - Average Loss: 0.2451\n",
      "Epoch 66/90 - Average Loss: 0.2355\n",
      "Epoch 67/90 - Average Loss: 0.2219\n",
      "Epoch 68/90 - Average Loss: 0.2122\n",
      "Epoch 69/90 - Average Loss: 0.2063\n",
      "Epoch 70/90 - Average Loss: 0.1950\n",
      "Epoch 71/90 - Average Loss: 0.1860\n",
      "Epoch 72/90 - Average Loss: 0.1758\n",
      "Epoch 73/90 - Average Loss: 0.1675\n",
      "Epoch 74/90 - Average Loss: 0.1630\n",
      "Epoch 75/90 - Average Loss: 0.1607\n",
      "Epoch 76/90 - Average Loss: 0.1525\n",
      "Epoch 77/90 - Average Loss: 0.1441\n",
      "Epoch 78/90 - Average Loss: 0.1364\n",
      "Epoch 79/90 - Average Loss: 0.1326\n",
      "Epoch 80/90 - Average Loss: 0.1293\n",
      "Epoch 81/90 - Average Loss: 0.1269\n",
      "Epoch 82/90 - Average Loss: 0.1199\n",
      "Epoch 83/90 - Average Loss: 0.1129\n",
      "Epoch 84/90 - Average Loss: 0.1095\n",
      "Epoch 85/90 - Average Loss: 0.1076\n",
      "Epoch 86/90 - Average Loss: 0.1030\n",
      "Epoch 87/90 - Average Loss: 0.0984\n",
      "Epoch 88/90 - Average Loss: 0.0944\n",
      "Epoch 89/90 - Average Loss: 0.0919\n",
      "Epoch 90/90 - Average Loss: 0.0880\n"
     ]
    }
   ],
   "source": [
    "# Importing Libraries\n",
    "import json\n",
    "import torch\n",
    "import os\n",
    "import torch.nn as nn\n",
    "import torch.optim as optim\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "from transformers import BertTokenizer, BertForSequenceClassification\n",
    "import torch.nn.functional as F\n",
    "from sklearn.utils.class_weight import compute_class_weight\n",
    "import numpy as np\n",
    "import random\n",
    "\n",
    "# Load JSON data\n",
    "with open(\"/kaggle/input/intents1/intents.json\", \"r\") as file:\n",
    "    intents = json.load(file)\n",
    "\n",
    "# Remove duplicate intent tags\n",
    "unique_intents = []\n",
    "seen_tags = set()\n",
    "for intent in intents:\n",
    "    if intent[\"tag\"] not in seen_tags:\n",
    "        unique_intents.append(intent)\n",
    "        seen_tags.add(intent[\"tag\"])\n",
    "\n",
    "# Ensure unique intent tags\n",
    "intent_tags = [intent[\"tag\"] for intent in unique_intents]\n",
    "num_labels = len(intent_tags)\n",
    "\n",
    "# Create label mapping\n",
    "label_map = {tag: i for i, tag in enumerate(intent_tags)}\n",
    "\n",
    "# Check for GPU availability\n",
    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "print(f\"Using device: {device}\")\n",
    "\n",
    "# Load BERT tokenizer & model\n",
    "tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', token=secret_value_0)\n",
    "model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=num_labels, token=secret_value_0)\n",
    "model.to(device)\n",
    "\n",
    "# Define Dataset\n",
    "class IntentDataset(Dataset):\n",
    "    def __init__(self, intents, tokenizer):\n",
    "        self.texts = []\n",
    "        self.labels = []\n",
    "        self.label_map = label_map\n",
    "\n",
    "        for intent in intents:\n",
    "            for pattern in intent[\"patterns\"]:\n",
    "                self.texts.append(pattern)\n",
    "                self.labels.append(self.label_map[intent[\"tag\"]])\n",
    "\n",
    "    def __len__(self):\n",
    "        return len(self.labels)\n",
    "\n",
    "    def __getitem__(self, idx):\n",
    "        text = self.texts[idx]\n",
    "        label = torch.tensor(self.labels[idx], dtype=torch.long).to(device)\n",
    "\n",
    "        encoding = tokenizer(text, truncation=True, padding=\"max_length\", max_length=32, return_tensors=\"pt\")\n",
    "        item = {key: val.squeeze(0).to(device) for key, val in encoding.items()}  # Remove batch dim\n",
    "\n",
    "        return item, label\n",
    "\n",
    "# Load dataset & dataloader\n",
    "dataset = IntentDataset(unique_intents, tokenizer)\n",
    "dataloader = DataLoader(dataset, batch_size=16, shuffle=True)  # Increased batch size\n",
    "\n",
    "# Compute class weights\n",
    "labels = [dataset.label_map[intent[\"tag\"]] for intent in unique_intents for _ in intent[\"patterns\"]]\n",
    "class_weights = compute_class_weight(\"balanced\", classes=np.unique(labels), y=labels)\n",
    "class_weights = torch.tensor(class_weights, dtype=torch.float).to(device)\n",
    "\n",
    "# Define optimizer & loss function\n",
    "optimizer = torch.optim.AdamW(model.parameters(), lr=2e-5)  # Lower learning rate\n",
    "loss_fn = torch.nn.CrossEntropyLoss(weight=class_weights)  # Use class-weighted loss\n",
    "\n",
    "# Training loop\n",
    "epochs = 90  # Increased from 20 to 50 for better training\n",
    "model.train()\n",
    "\n",
    "for epoch in range(epochs):\n",
    "    total_loss = 0\n",
    "    for batch in dataloader:\n",
    "        inputs, labels = batch\n",
    "        optimizer.zero_grad()\n",
    "        outputs = model(**inputs)\n",
    "        loss = loss_fn(outputs.logits, labels)\n",
    "        loss.backward()\n",
    "        optimizer.step()\n",
    "        total_loss += loss.item()\n",
    "    \n",
    "    avg_loss = total_loss / len(dataloader)\n",
    "    print(f\"Epoch {epoch+1}/{epochs} - Average Loss: {avg_loss:.4f}\")\n",
    "\n",
    "# Function to predict intent\n",
    "def predict_intent(user_input):\n",
    "    model.eval()\n",
    "    inputs = tokenizer(user_input, return_tensors=\"pt\", truncation=True, padding=True, max_length=32)\n",
    "    inputs = {key: val.to(device) for key, val in inputs.items()}  # Move input to GPU\n",
    "\n",
    "    with torch.no_grad():\n",
    "        outputs = model(**inputs)\n",
    "\n",
    "    predicted_label = torch.argmax(outputs.logits).item()\n",
    "    \n",
    "    # Map predicted label to intent\n",
    "    intent_tag = list(dataset.label_map.keys())[predicted_label]\n",
    "\n",
    "    # Fetch a random response for the predicted intent\n",
    "    for intent in unique_intents:\n",
    "        if intent[\"tag\"] == intent_tag:\n",
    "            return random.choice(intent[\"responses\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-14T06:12:26.505510Z",
     "iopub.status.busy": "2025-03-14T06:12:26.504747Z",
     "iopub.status.idle": "2025-03-14T06:12:26.934471Z",
     "shell.execute_reply": "2025-03-14T06:12:26.933341Z",
     "shell.execute_reply.started": "2025-03-14T06:12:26.505474Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Test Accuracy: 1.0000\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "from torch.utils.data import random_split\n",
    "from sklearn.metrics import accuracy_score\n",
    "\n",
    "# Split dataset into training (80%) and test (20%) sets\n",
    "train_size = int(0.8 * len(dataset))\n",
    "test_size = len(dataset) - train_size\n",
    "train_dataset, test_dataset = random_split(dataset, [train_size, test_size])\n",
    "\n",
    "# Create test dataloader\n",
    "test_dataloader = DataLoader(test_dataset, batch_size=16, shuffle=False)\n",
    "\n",
    "# Function to evaluate model accuracy\n",
    "def evaluate_model(model, test_dataloader):\n",
    "    model.eval()\n",
    "    all_preds, all_labels = [], []\n",
    "    \n",
    "    with torch.no_grad():\n",
    "        for batch in test_dataloader:\n",
    "            inputs, labels = batch\n",
    "            outputs = model(**inputs)\n",
    "            preds = torch.argmax(outputs.logits, dim=1)\n",
    "\n",
    "            all_preds.extend(preds.cpu().numpy())\n",
    "            all_labels.extend(labels.cpu().numpy())\n",
    "\n",
    "    accuracy = accuracy_score(all_labels, all_preds)\n",
    "    return accuracy\n",
    "\n",
    "# Compute accuracy\n",
    "test_accuracy = evaluate_model(model, test_dataloader)\n",
    "print(f\"Test Accuracy: {test_accuracy:.4f}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-14T06:12:26.936897Z",
     "iopub.status.busy": "2025-03-14T06:12:26.936431Z",
     "iopub.status.idle": "2025-03-14T06:12:28.400809Z",
     "shell.execute_reply": "2025-03-14T06:12:28.399868Z",
     "shell.execute_reply.started": "2025-03-14T06:12:26.936850Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Training Accuracy: 0.9939\n"
     ]
    }
   ],
   "source": [
    "def evaluate_train_accuracy(model, train_dataloader):\n",
    "    model.eval()\n",
    "    all_preds, all_labels = [], []\n",
    "    \n",
    "    with torch.no_grad():\n",
    "        for batch in train_dataloader:\n",
    "            inputs, labels = batch\n",
    "            outputs = model(**inputs)\n",
    "            preds = torch.argmax(outputs.logits, dim=1)\n",
    "\n",
    "            all_preds.extend(preds.cpu().numpy())\n",
    "            all_labels.extend(labels.cpu().numpy())\n",
    "\n",
    "    accuracy = accuracy_score(all_labels, all_preds)\n",
    "    return accuracy\n",
    "\n",
    "# Compute Training Accuracy\n",
    "train_dataloader = DataLoader(train_dataset, batch_size=16, shuffle=False)\n",
    "train_accuracy = evaluate_train_accuracy(model, train_dataloader)\n",
    "print(f\"Training Accuracy: {train_accuracy:.4f}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-14T06:12:28.401902Z",
     "iopub.status.busy": "2025-03-14T06:12:28.401654Z",
     "iopub.status.idle": "2025-03-14T06:20:24.794528Z",
     "shell.execute_reply": "2025-03-14T06:20:24.793362Z",
     "shell.execute_reply.started": "2025-03-14T06:12:28.401882Z"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8O0lEQVR4nO3dd3hUZd7G8e+k9wQSSAgEQgmE3gkBFJUoIEhVI6tS7IXisqsLFpqriIjyKihib0hTEBFQiIAIoYP0XkJLQoAUQhqZ8/4xMpol1JSTcn+ua16YM88585vMvuT2OU+xGIZhICIiIlKOOJhdgIiIiEhxUwASERGRckcBSERERModBSAREREpdxSAREREpNxRABIREZFyRwFIREREyh0FIBERESl3FIBERESk3FEAEinnBg4cSGho6E2dO2bMGCwWS+EWJCJSDBSAREooi8VyXY8VK1aYXWqZd+TIkev+Po4cOVLg9zt58iRjxoxh69at19X+888/x2KxsHHjxgK/t0h54WR2ASKSv6+++irP8y+//JKlS5dedrx+/foFep+PPvoIq9V6U+e+/PLLjBgxokDvXxpUqlTpsp/7pEmTOH78OO+8885lbQvq5MmTjB07ltDQUJo1a1bg64nI5RSAREqohx56KM/ztWvXsnTp0suO/68LFy7g4eFx3e/j7Ox8U/UBODk54eRU9v8Z8fT0vOznPnPmTM6dO3fN70NESibdAhMpxW677TYaNWrEpk2buPXWW/Hw8ODFF18E4IcffqBbt24EBwfj6upK7dq1efXVV8nNzc1zjf8dA3Tpds9bb73F9OnTqV27Nq6urrRu3ZoNGzbkOTe/MUAWi4XBgwczf/58GjVqhKurKw0bNmTJkiWX1b9ixQpatWqFm5sbtWvX5sMPP7yucUWDBw/Gy8uLCxcuXPZav379CAoKsn/OjRs30rlzZwICAnB3d6dmzZo88sgjV73+zcrKymL06NHUqVMHV1dXQkJCeOGFF8jKysrTbunSpXTo0AE/Pz+8vLyoV6+e/XtbsWIFrVu3BmDQoEH2W2uff/55gevbsmULXbt2xcfHBy8vLzp16sTatWvztMnJyWHs2LGEhYXh5uaGv78/HTp0YOnSpfY28fHxDBo0iGrVquHq6kqVKlXo2bNnodz+EykuZf8/3UTKuDNnztC1a1ceeOABHnroIQIDAwHbuBAvLy+GDx+Ol5cXv/76K6NGjSI1NZWJEyde87ozZswgLS2NJ598EovFwptvvkmfPn04dOjQNXuNfv/9d77//nueeeYZvL29effdd+nbty9xcXH4+/sDtl/GXbp0oUqVKowdO5bc3FzGjRt3XbeQoqOjmTp1Kj/99BP33Xef/fiFCxf48ccfGThwII6OjiQmJnLXXXdRqVIlRowYgZ+fH0eOHOH777+/5nvcKKvVSo8ePfj999954oknqF+/Ptu3b+edd95h3759zJ8/H4CdO3fSvXt3mjRpwrhx43B1deXAgQOsXr0asN3SHDduHKNGjeKJJ57glltuAaBdu3YFqm/nzp3ccsst+Pj48MILL+Ds7MyHH37IbbfdxsqVK4mIiABsoXb8+PE89thjtGnThtTUVDZu3MjmzZu58847Aejbty87d+5kyJAhhIaGkpiYyNKlS4mLi7vpAfUixc4QkVLh2WefNf73/2U7duxoAMa0adMua3/hwoXLjj355JOGh4eHkZmZaT82YMAAo0aNGvbnhw8fNgDD39/fOHv2rP34Dz/8YADGjz/+aD82evToy2oCDBcXF+PAgQP2Y3/88YcBGO+995792D333GN4eHgYJ06csB/bv3+/4eTkdNk1/5fVajWqVq1q9O3bN8/x2bNnG4Dx22+/GYZhGPPmzTMAY8OGDVe93s3o1q1bnp/bV199ZTg4OBirVq3K027atGkGYKxevdowDMN45513DMA4ffr0Fa+9YcMGAzA+++yz66rls88+u+bn7NWrl+Hi4mIcPHjQfuzkyZOGt7e3ceutt9qPNW3a1OjWrdsVr3Pu3DkDMCZOnHhdtYmUVLoFJlLKubq6MmjQoMuOu7u72/+elpZGUlISt9xyCxcuXGDPnj3XvG50dDQVKlSwP7/UE3Ho0KFrnhsVFUXt2rXtz5s0aYKPj4/93NzcXJYtW0avXr0IDg62t6tTpw5du3a95vUtFgv33XcfixYt4vz58/bjs2bNomrVqnTo0AEAPz8/ABYuXEhOTs41r1sQc+bMoX79+oSHh5OUlGR/3HHHHQAsX748T00//PDDTQ8+v1G5ubn88ssv9OrVi1q1atmPV6lShX/84x/8/vvvpKam2uvbuXMn+/fvz/da7u7uuLi4sGLFCs6dO1cs9YsUBQUgkVKuatWquLi4XHZ8586d9O7dG19fX3x8fKhUqZJ9wG5KSso1r1u9evU8zy+Foev5pfe/5146/9K5iYmJZGRkUKdOncva5XcsP9HR0WRkZLBgwQIAzp8/z6JFi7jvvvvsY4g6duxI3759GTt2LAEBAfTs2ZPPPvvssjE5hWH//v3s3LmTSpUq5XnUrVsXsH3mS3W3b9+exx57jMDAQB544AFmz55dpGHo9OnTXLhwgXr16l32Wv369bFarRw7dgyAcePGkZycTN26dWncuDHPP/8827Zts7d3dXVlwoQJLF68mMDAQG699VbefPNN4uPji6x+kaKgACRSyv29p+eS5ORkOnbsyB9//MG4ceP48ccfWbp0KRMmTAC4rl+2jo6O+R43DKNIz71ebdu2JTQ0lNmzZwPw448/kpGRQXR0tL2NxWJh7ty5xMbGMnjwYE6cOMEjjzxCy5Yt8/QcFQar1Urjxo1ZunRpvo9nnnkGsH1fv/32G8uWLePhhx9m27ZtREdHc+edd142QN0Mt956KwcPHuTTTz+lUaNGfPzxx7Ro0YKPP/7Y3ua5555j3759jB8/Hjc3N1555RXq16/Pli1bTKxc5MYoAImUQStWrODMmTN8/vnnDBs2jO7duxMVFZXnlpaZKleujJubGwcOHLjstfyOXcn999/PkiVLSE1NZdasWYSGhtK2bdvL2rVt25bXXnuNjRs38s0337Bz505mzpxZoM/wv2rXrs3Zs2fp1KkTUVFRlz3+3vvi4OBAp06dePvtt9m1axevvfYav/76q/02WWGvrl2pUiU8PDzYu3fvZa/t2bMHBwcHQkJC7McqVqzIoEGD+Pbbbzl27BhNmjRhzJgxl33ef/3rX/zyyy/s2LGD7OxsJk2aVKh1ixQlBSCRMuhSD8zfe1yys7N5//33zSopD0dHR6Kiopg/fz4nT560Hz9w4ACLFy++7utER0eTlZXFF198wZIlS7j//vvzvH7u3LnLep0uLSz499tgBw8e5ODBgzfxSf5y//33c+LECT766KPLXsvIyCA9PR2As2fPXvb6/9bk6ekJ2HryCoOjoyN33XUXP/zwQ56p6gkJCcyYMYMOHTrg4+MD2GYV/p2Xlxd16tSx13bhwgUyMzPztKlduzbe3t5FcmtRpKhoGrxIGdSuXTsqVKjAgAEDGDp0KBaLha+++qpQb0EV1JgxY/jll19o3749Tz/9NLm5uUyZMoVGjRpd9xYQLVq0oE6dOrz00ktkZWXluf0F8MUXX/D+++/Tu3dvateuTVpaGh999BE+Pj7cfffd9nadOnUCKNA6Ng8//DCzZ8/mqaeeYvny5bRv357c3Fz27NnD7Nmz+fnnn2nVqhXjxo3jt99+o1u3btSoUYPExETef/99qlWrZh+8Xbt2bfz8/Jg2bRre3t54enoSERFBzZo1r1rDp59+mu96S8OGDeO///2vff2hZ555BicnJz788EOysrJ488037W0bNGjAbbfdRsuWLalYsSIbN25k7ty5DB48GIB9+/bRqVMn7r//fho0aICTkxPz5s0jISGBBx544KZ/fiLFztQ5aCJy3a40Db5hw4b5tl+9erXRtm1bw93d3QgODjZeeOEF4+effzYAY/ny5fZ2V5oGn980Z8AYPXq0/fmVpsE/++yzl51bo0YNY8CAAXmOxcTEGM2bNzdcXFyM2rVrGx9//LHxr3/9y3Bzc7vCT+FyL730kgEYderUuey1zZs3G/369TOqV69uuLq6GpUrVza6d+9ubNy48bLa/v4zuB7/Ow3eMAwjOzvbmDBhgtGwYUPD1dXVqFChgtGyZUtj7NixRkpKiv0z9+zZ0wgODjZcXFyM4OBgo1+/fsa+ffvyXOuHH34wGjRoYF8W4GpT4i9Ng7/S49ixY/afR+fOnQ0vLy/Dw8PDuP322401a9bkudZ///tfo02bNoafn5/h7u5uhIeHG6+99pqRnZ1tGIZhJCUlGc8++6wRHh5ueHp6Gr6+vkZERIQxe/bsG/r5iZjNYhgl6D8JRaTc69Wr11WnYYuIFAaNARIR02RkZOR5vn//fhYtWsRtt91mTkEiUm6oB0hETFOlShUGDhxIrVq1OHr0KB988AFZWVls2bKFsLAws8sTkTJMg6BFxDRdunTh22+/JT4+HldXVyIjI3n99dcVfkSkyKkHSERERModjQESERGRckcBSERERModjQHKh9Vq5eTJk3h7exf6kvQiIiJSNAzDIC0tjeDgYBwcrt7HowCUj5MnT+bZF0dERERKj2PHjlGtWrWrtlEAyoe3tzdg+wFe2h9HRERESrbU1FRCQkLsv8evRgEoH5due/n4+CgAiYiIlDLXM3xFg6BFRESk3DE9AE2dOpXQ0FDc3NyIiIhg/fr1V20/Z84cwsPDcXNzo3HjxixatCjP6wkJCQwcOJDg4GA8PDzo0qWL9hQSERGRPEwNQLNmzWL48OGMHj2azZs307RpUzp37kxiYmK+7desWUO/fv149NFH2bJlC7169aJXr17s2LEDsI3+7tWrF4cOHeKHH35gy5Yt1KhRg6ioKNLT04vzo4mIiEgJZupK0BEREbRu3ZopU6YAtunnISEhDBkyhBEjRlzWPjo6mvT0dBYuXGg/1rZtW5o1a8a0adPYt28f9erVY8eOHTRs2NB+zaCgIF5//XUee+yx66orNTUVX19fUlJSNAZIRKQMyM3NJScnx+wypICcnZ1xdHS84us38vvbtEHQ2dnZbNq0iZEjR9qPOTg4EBUVRWxsbL7nxMbGMnz48DzHOnfuzPz58wHIysoCwM3NLc81XV1d+f33368YgLKysuzngu0HKCIipZ9hGMTHx5OcnGx2KVJI/Pz8CAoKKvA6faYFoKSkJHJzcwkMDMxzPDAwkD179uR7Tnx8fL7t4+PjAQgPD6d69eqMHDmSDz/8EE9PT9555x2OHz/OqVOnrljL+PHjGTt2bAE/kYiIlDSXwk/lypXx8PDQ4ralmGEYXLhwwT5MpkqVKgW6XpmaBu/s7Mz333/Po48+SsWKFXF0dCQqKoquXbtytTt9I0eOzNOzdGkdARERKb1yc3Pt4cff39/scqQQuLu7A5CYmEjlypWvejvsWkwLQAEBATg6OpKQkJDneEJCAkFBQfmeExQUdM32LVu2ZOvWraSkpJCdnU2lSpWIiIigVatWV6zF1dUVV1fXAnwaEREpaS6N+fHw8DC5EilMl77PnJycAgUg02aBubi40LJlS2JiYuzHrFYrMTExREZG5ntOZGRknvYAS5cuzbe9r68vlSpVYv/+/WzcuJGePXsW7gcQEZFSQbe9ypbC+j5NvQU2fPhwBgwYQKtWrWjTpg2TJ08mPT2dQYMGAdC/f3+qVq3K+PHjARg2bBgdO3Zk0qRJdOvWjZkzZ7Jx40amT59uv+acOXOoVKkS1atXZ/v27QwbNoxevXpx1113mfIZRUREpOQxNQBFR0dz+vRpRo0aRXx8PM2aNWPJkiX2gc5xcXF5dnNt164dM2bM4OWXX+bFF18kLCyM+fPn06hRI3ubU6dOMXz4cBISEqhSpQr9+/fnlVdeKfbPJiIiUlKEhoby3HPP8dxzz5ldSolh6jpAJZXWARIRKf0yMzM5fPgwNWvWzLM8Skl2rds7o0ePZsyYMTd83dOnT+Pp6Vmg8VC33XYbzZo1Y/LkyTd9jcJwte+1VKwDVF79uieBW8Mq4eRo+i4kIiJSwvx9yZZZs2YxatQo9u7daz/m5eVl/7thGOTm5uLkdO1f5ZUqVSrcQssA/RYuRm8v3ccjn29kzI87rzotX0REyqegoCD7w9fXF4vFYn++Z88evL29Wbx4MS1btrQv8nvw4EF69uxJYGAgXl5etG7dmmXLluW5bmhoaJ6eG4vFwscff0zv3r3x8PAgLCyMBQsWFKj27777joYNG+Lq6kpoaCiTJk3K8/r7779PWFgYbm5uBAYGcu+999pfmzt3Lo0bN8bd3R1/f/9i2cJKPUDFqGGwDxYLfL02jloBXjzSoabZJYmIlCuGYZCRk1vs7+vu7Fhos5dGjBjBW2+9Ra1atahQoQLHjh3j7rvv5rXXXsPV1ZUvv/ySe+65h71791K9evUrXmfs2LG8+eabTJw4kffee48HH3yQo0ePUrFixRuuadOmTdx///2MGTOG6Oho1qxZwzPPPIO/vz8DBw5k48aNDB06lK+++op27dpx9uxZVq1aBdh6vfr168ebb75J7969SUtLY9WqVUXeUaAAVIw6NwxiZNdwXl+0h//+tIsa/h50qh947RNFRKRQZOTk0mDUz8X+vrvGdcbDpXB+5Y4bN44777zT/rxixYo0bdrU/vzVV19l3rx5LFiwgMGDB1/xOgMHDqRfv34AvP7667z77rusX7+eLl263HBNb7/9Np06dbJPOqpbty67du1i4sSJDBw4kLi4ODw9PenevTve3t7UqFGD5s2bA7YAdPHiRfr06UONGjUAaNy48Q3XcKN0C6yYPX5LLfq1CcFqwJBvt7DrpPYdExGR6/e/C/ueP3+ef//739SvXx8/Pz+8vLzYvXs3cXFxV71OkyZN7H/39PTEx8fHvs3Ejdq9ezft27fPc6x9+/bs37+f3Nxc7rzzTmrUqEGtWrV4+OGH+eabb7hw4QIATZs2pVOnTjRu3Jj77ruPjz76iHPnzt1UHTdCPUDFzGKxMK5nI+LOXmD1gTM8+sUG5j/bnkCf0jFDQUSkNHN3dmTXuM6mvG9h8fT0zPP83//+N0uXLuWtt96iTp06uLu7c++995KdnX3V6zg7O+d5brFYsFqthVbn33l7e7N582ZWrFjBL7/8wqhRoxgzZgwbNmzAz8+PpUuXsmbNGn755Rfee+89XnrpJdatW0fNmkU3VEQ9QCZwdnTg/X+0pHYlT06lZPLYFxu5kH3R7LJERMo8i8WCh4tTsT+KcjXq1atXM3DgQHr37k3jxo0JCgriyJEjRfZ++alfvz6rV6++rK66devat6twcnIiKiqKN998k23btnHkyBF+/fVXwPa9tG/fnrFjx7JlyxZcXFyYN29ekdasHiCT+Ho48+nA1vR+fw3bT6Qw8ee9jL6nodlliYhIKRMWFsb333/PPffcg8Vi4ZVXXimynpzTp0+zdevWPMeqVKnCv/71L1q3bs2rr75KdHQ0sbGxTJkyhffffx+AhQsXcujQIW699VYqVKjAokWLsFqt1KtXj3Xr1hETE8Ndd91F5cqVWbduHadPn6Z+/fpF8hkuUQ+QiWr4e/JaL9sq1r/uubn7riIiUr69/fbbVKhQgXbt2nHPPffQuXNnWrRoUSTvNWPGDJo3b57n8dFHH9GiRQtmz57NzJkzadSoEaNGjWLcuHEMHDgQAD8/P77//nvuuOMO6tevz7Rp0/j2229p2LAhPj4+/Pbbb9x9993UrVuXl19+mUmTJtG1a9ci+QyXaCXofBTnStCpmTk0G/sLVgPWjuxEkK/GAomIFIbSuBK0XFthrQStHiCT+bg50yDY9iWtP3LW5GpERETKBwWgEqB1qG3RqfWHz5hciYiISPmgAFQCRNS0BaANh4t+3QMRERFRACoRLvUA7U1I41z61ddtEBERkYJTACoB/L1cqVPZtsPvBo0DEhERKXIKQCXEX+OAFIBERESKmgJQCWEfB6QeIBERkSKnAFRCtPkzAO04mcr5LG2LISIiUpQUgEqIYD93qlVwJ9dqsPmoZoOJiIgUJQWgEqSNxgGJiIgUCwWgEuTSbTCtCC0iUj5ZLJarPsaMGVOga8+fP7/Q2pV22g2+BLkUgLYeSyYzJxc3Z0eTKxIRkeJ06tQp+99nzZrFqFGj2Lt3r/2Yl5eXGWWVSeoBKkFqBngS4OVK9kUr246nmF2OiIgUs6CgIPvD19cXi8WS59jMmTOpX78+bm5uhIeH8/7779vPzc7OZvDgwVSpUgU3Nzdq1KjB+PHjAQgNDQWgd+/eWCwW+/MbZbVaGTduHNWqVcPV1ZVmzZqxZMmS66rBMAzGjBlD9erVcXV1JTg4mKFDh97cD6oQqAeoBLFYLLSpWYFF2+PZcOSsvUdIREQKiWFAzoXif19nD7BYCnSJb775hlGjRjFlyhSaN2/Oli1bePzxx/H09GTAgAG8++67LFiwgNmzZ1O9enWOHTvGsWPHANiwYQOVK1fms88+o0uXLjg63twdhv/7v/9j0qRJfPjhhzRv3pxPP/2UHj16sHPnTsLCwq5aw3fffcc777zDzJkzadiwIfHx8fzxxx8F+pkUhAJQCdMmtCKLtsez7vBZnr3d7GpERMqYnAvwenDxv++LJ8HFs0CXGD16NJMmTaJPnz4A1KxZk127dvHhhx8yYMAA4uLiCAsLo0OHDlgsFmrUqGE/t1KlSgD4+fkRFBR00zW89dZb/Oc//+GBBx4AYMKECSxfvpzJkyczderUq9YQFxdHUFAQUVFRODs7U716ddq0aXPTtRSUboGVMG1q+gOw6chZLuZaTa5GRERKgvT0dA4ePMijjz6Kl5eX/fHf//6XgwcPAjBw4EC2bt1KvXr1GDp0KL/88kuh1pCamsrJkydp3759nuPt27dn9+7d16zhvvvuIyMjg1q1avH4448zb948Ll40b9079QCVMPWCvPFxcyI18yK7TqXSpJqf2SWJiJQdzh623hgz3rcAzp8/D8BHH31EREREntcu3c5q0aIFhw8fZvHixSxbtoz777+fqKgo5s6dW6D3vhFXqyEkJIS9e/eybNkyli5dyjPPPMPEiRNZuXIlzs7OxVbjJQpAJYyjg4VWoRX5dU8i6w+fVQASESlMFkuBb0WZITAwkODgYA4dOsSDDz54xXY+Pj5ER0cTHR3NvffeS5cuXTh79iwVK1bE2dmZ3Nzcm67Bx8eH4OBgVq9eTceOHe3HV69enedW1tVqcHd355577uGee+7h2WefJTw8nO3bt9OiRYubrutmKQCVQG1q2gLQusNneeyWWmaXIyIiJcDYsWMZOnQovr6+dOnShaysLDZu3Mi5c+cYPnw4b7/9NlWqVKF58+Y4ODgwZ84cgoKC8PPzA2wzwWJiYmjfvj2urq5UqFDhiu91+PBhtm7dmudYWFgYzz//PKNHj6Z27do0a9aMzz77jK1bt/LNN98AXLWGzz//nNzcXCIiIvDw8ODrr7/G3d09zzih4qQAVAJd2hh1/eGzWK0GDg4FmzkgIiKl32OPPYaHhwcTJ07k+eefx9PTk8aNG/Pcc88B4O3tzZtvvsn+/ftxdHSkdevWLFq0CAcH23DfSZMmMXz4cD766COqVq3KkSNHrvhew4cPv+zYqlWrGDp0KCkpKfzrX/8iMTGRBg0asGDBAsLCwq5Zg5+fH2+88QbDhw8nNzeXxo0b8+OPP+Lv71/oP6vrYTEMwzDlnUuw1NRUfH19SUlJwcfHp9jf/2KulWbjlnI+6yILh3SgUVXfYq9BRKS0y8zM5PDhw9SsWRM3Nzezy5FCcrXv9UZ+f2sWWAnk5OhA61Bb1+TaQ2dMrkZERKTsUQAqoSJr27oE1xxUABIRESlsCkAlVGStAMA2DkjrAYmIiBQuBaASqkGwDz5uTpzPusiOk6lmlyMiIlKmKACVUI4OFvuq0LG6DSYictM016dsKazvUwGoBLs0DihWA6FFRG7YpdWFL1wwYfNTKTKXvs+Crh6tdYBKsHZ/BqCNR86Sk2vF2VF5VUTkejk6OuLn50diYiIAHh4eWAq4I7uYxzAMLly4QGJiIn5+fje9o/0lpgegqVOnMnHiROLj42natCnvvffeVXeHnTNnDq+88gpHjhwhLCyMCRMmcPfdd9tfP3/+PCNGjGD+/PmcOXOGmjVrMnToUJ566qni+DiFql6gNxU8nDl3IYdtx5NpWaOi2SWJiJQql3Y+vxSCpPQr6I72l5gagGbNmsXw4cOZNm0aERERTJ48mc6dO7N3714qV658Wfs1a9bQr18/xo8fT/fu3ZkxYwa9evVi8+bNNGrUCLCtXvnrr7/y9ddfExoayi+//MIzzzxDcHAwPXr0KO6PWCAODhba1vJn8Y54Yg+eUQASEblBFouFKlWqULlyZXJycswuRwrI2dm5wD0/l5i6EnRERAStW7dmypQpAFitVkJCQhgyZAgjRoy4rH10dDTp6eksXLjQfqxt27Y0a9aMadOmAdCoUSOio6N55ZVX7G1atmxJ165d+e9//3tddZm9EvTffRl7hFE/7KR9HX++eaytqbWIiIiUZKViJejs7Gw2bdpEVFTUX8U4OBAVFUVsbGy+58TGxuZpD9C5c+c87du1a8eCBQs4ceIEhmGwfPly9u3bx1133VU0H6SIRda6NA7oHFkXb34XXxEREfmLaQEoKSmJ3NxcAgMD8xwPDAwkPj4+33Pi4+Ov2f69996jQYMGVKtWDRcXF7p06cLUqVO59dZbr1hLVlYWqampeR4lRZ3KXgR4uZJ10cqWuGSzyxERESkTyty0ovfee4+1a9eyYMECNm3axKRJk3j22WdZtmzZFc8ZP348vr6+9kdISEgxVnx1FouFtrVsY3/yWw8oIzuX7ItaKVpERORGmBaAAgICcHR0JCEhIc/xhISEK47uDgoKumr7jIwMXnzxRd5++23uuecemjRpwuDBg4mOjuatt966Yi0jR44kJSXF/jh27FgBP13hym89IMMw+Cr2CE3H/kL/T9dpoS8REZEbYFoAcnFxoWXLlsTExNiPWa1WYmJiiIyMzPecyMjIPO0Bli5dam+fk5NDTk4ODg55P5ajoyNW65V7SVxdXfHx8cnzKEkujQPaGpdMZk4uF7IvMnz2H7zyw06yc62sPXSW5Xs1xVNEROR6mToNfvjw4QwYMIBWrVrRpk0bJk+eTHp6OoMGDQKgf//+VK1alfHjxwMwbNgwOnbsyKRJk+jWrRszZ85k48aNTJ8+HQAfHx86duzI888/j7u7OzVq1GDlypV8+eWXvP3226Z9zoKqGeBJoI8rCalZzN10nK/XHmVPfBqODhYaV/Vl67Fkpvx6gNvrVdYiXyIiItfB1AAUHR3N6dOnGTVqFPHx8TRr1owlS5bYBzrHxcXl6c1p164dM2bM4OWXX+bFF18kLCyM+fPn29cAApg5cyYjR47kwQcf5OzZs9SoUYPXXnutVC6EeInFYqFd7QDmbTnBy/N3ABDg5crUfzSnZiVPOkxYzua4ZGIPnaFd7QCTqxURESn5TF0HqKQqSesAXTJ7wzFe+G4bAK1DKzDlHy0I9HED4JX5O/hq7VGtFSQiIuVaqVgHSG5Ml8ZB3BIWwLO312bG423t4QfgyY61cHKwsPrAGbbEnTOxShERkdJBAaiU8HFz5qtHI3i+c/hlm6JWq+BBr+ZVAZi6/KAZ5YmIiJQqCkBlxNO31cZigWW7E9gTX3IWchQRESmJFIDKiNqVvLi7URVAvUAiIiLXogBUhjxze20Aftp2ksNJ6SZXIyIiUnIpAJUhDYN9ub1eJawGTFuhXiAREZErUQAqYwbfUQeA77ccJ+l8lsnViIiIlEwKQGVMyxoVaVLNl5xcgzkbj5tdjoiISImkAFQGPRRRA4AZ649itWqdSxERkf+lAFQG3dM0GB83J46dzeC3/afNLkdERKTEUQAqg9xdHOnbshoAX6+NM7kaERGRkkcBqIx68M/bYL/uSeBEcobJ1YiIiJQsCkBlVJ3KXrStVRGrATPXqxdIRETk7xSAyrCH2tp6gWZuOEZOrtXkakREREoOBaAy7K4GQQR4uXI6LYuluxLMLkdERKTEUAAqw1ycHHigdQgAX689anI1IiIiJYcCUBnXL6I6DhZYc/AMB0+fN7scERGREkEBqIyr6ufO7fUqAzBjnQZDi4iIgAJQuWAfDL0+jrWHzphcjYiIiPkUgMqBW+tWIrKWP+nZufT/ZD2Ltp8yuyQRERFTKQCVA44OFj4b1JrODQPJzrXy7IzNfL76sNlliYiImEYBqJxwc3bk/Qdb8nDbGhgGjPlxF28s3oNhaLNUEREpfxSAyhFHBwvjejbk33fVBWDayoM8P3ebQpCIiJQ7CkDljMViYfAdYbx5bxMcHSzM3XScBX+cNLssERGRYqUAVE7d3yqEYZ3CAHjtp92kZeaYXJGIiEjxUQAqx564tRY1AzxJTMvinaX7zS5HRESk2CgAlWNuzo6M7dEQgC9ij7DrZKrJFYmIiBQPBaBy7ta6lbi7cRC5VoNXftiB1aoB0SIiUvYpAAmvdG+Ah4sjm46eY+7m42aXIyIiUuQUgIQqvu48F2UbEP3G4j0kX8g2uSIREZGipQAkAAxqX5O6gV6cTc/mzZ/3ml2OiIhIkVIAEgCcHR14tWcjAL5dH8emo+dMrkhERKToKACJXUQtf+5tWQ3DgBHfbSPrYq7ZJYmIiBQJBSDJ4+Vu9QnwcmF/4nneX37Q7HJERESKhAKQ5OHn4cKYP9cGen/FAfYlpJlckYiISOFTAJLLdGtchaj6geTkGrwwdxu5WhtIRETKGAUguYzFYuG/vRrh7erE1mPJfLHmiNkliYiIFCoFIMlXkK8b/+kaDsDEn/dy7OwFkysSEREpPApAckX/aFOdNjUrkpGTy4vztmMYuhUmIiJlQ4kIQFOnTiU0NBQ3NzciIiJYv379VdvPmTOH8PBw3NzcaNy4MYsWLcrzusViyfcxceLEovwYZY6Dg4U3+jTGxcmBVfuTWHf4rNkliYiIFArTA9CsWbMYPnw4o0ePZvPmzTRt2pTOnTuTmJiYb/s1a9bQr18/Hn30UbZs2UKvXr3o1asXO3bssLc5depUnsenn36KxWKhb9++xfWxyoxalbzo0TQYgJ+2nTK5GhERkcJhMUy+rxEREUHr1q2ZMmUKAFarlZCQEIYMGcKIESMuax8dHU16ejoLFy60H2vbti3NmjVj2rRp+b5Hr169SEtLIyYm5rpqSk1NxdfXl5SUFHx8fG7iU5Uty/cmMuizDQR4ubLuxU44OljMLklEROQyN/L729QeoOzsbDZt2kRUVJT9mIODA1FRUcTGxuZ7TmxsbJ72AJ07d75i+4SEBH766SceffTRK9aRlZVFampqnof8pX3tAHzdnUk6n8V63QYTEZEywNQAlJSURG5uLoGBgXmOBwYGEh8fn+858fHxN9T+iy++wNvbmz59+lyxjvHjx+Pr62t/hISE3OAnKdtcnBzo3ND2M/9p+0mTqxERESk408cAFbVPP/2UBx98EDc3tyu2GTlyJCkpKfbHsWPHirHC0uHuxlUAWLIjXgsjiohIqedk5psHBATg6OhIQkJCnuMJCQkEBQXle05QUNB1t1+1ahV79+5l1qxZV63D1dUVV1fXG6y+fGlf59JtsGzWHT5Du9oBZpckIiJy00ztAXJxcaFly5Z5BidbrVZiYmKIjIzM95zIyMjLBjMvXbo03/affPIJLVu2pGnTpoVbeDnk7OhAl4a2kKnZYCIiUtqZfgts+PDhfPTRR3zxxRfs3r2bp59+mvT0dAYNGgRA//79GTlypL39sGHDWLJkCZMmTWLPnj2MGTOGjRs3Mnjw4DzXTU1NZc6cOTz22GPF+nnKsm5N/roNdjHXanI1IiIiN8/UW2Bgm9Z++vRpRo0aRXx8PM2aNWPJkiX2gc5xcXE4OPyV09q1a8eMGTN4+eWXefHFFwkLC2P+/Pk0atQoz3VnzpyJYRj069evWD9PWRZZ258KHs6cSc9m3eGztK+j22AiIlI6mb4OUEmkdYCubMR325i54Rj/iKjO670bm12OiIiIXalZB0hKH90GExGRskABSG5IZC3bbbCz6dmsPaRFEUVEpHRSAJIb4uToQJdGtl6gn7ZrNpiIiJROCkByw7rbb4OdIke3wUREpBRSAJIbFlGzIhU9XTh3IYfe769m9YEks0sSERG5IQpAcsOcHB0Y17MhXq5O7DiRyoMfr2PAp+vZfUqbyIqISOmgafD50DT463PmfBbv/XqAb9YdJSfXwGKBvi2q8WrPRri7OJpdnoiIlDOaBi/Fwt/LlTE9GrJseEe6N6mCYcDcTcd5Z9k+s0sTERG5KgUgKbAa/p5M+UcLpj3UAoBPfz/MvoQ0k6sSERG5MgUgKTRdGlXhrgaBXLQajPphB7q7KiIiJZUCkBSqV7o3wNXJgbWHzvKjdo0XEZESSgFIClVIRQ8G314HgP8u3MX5rIsmVyQiInI5BSApdI/fWotQfw8S07L4Pw2IFhGREkgBSAqdm7MjY3o0BODT1UfYG68B0SIiUrIoAEmRuK1eZe5qEEiuBkSLiEgJpAAkReaV7g1wc3Zg3eGzLPjjpNnliIiI2CkASZHJMyD6p92kZeaYXJGIiIiNApAUqUsDok+nZTF52X6zyxEREQEUgKSIuTo5MrZnIwA+X3OEPfHaMFVERMynACRFrmPdSnRtFESu1eCV+RoQLSIi5lMAkmLxcvcGuDs7suHIOeZtOWF2OSIiUs4pAEmxqOrnzpBOtgHRry/aTUqGBkSLiIh5FICk2DzWoRa1KnmSdD6bd5ZqhWgRETGPApAUGxcnB8b1sA2I/jL2CDtOpJhckYiIlFcKQFKsOoQF0K1JFawGPD93G9kXrWaXJCIi5ZACkBS7Mfc0pIKHM7tPpTLlV60NJCIixU8BSIpdJW9XXu1luxU2dcVBth/XrTARESleCkBiiu5NgunWpAq5VoN/zdlK1sVcs0sSEZFyRAFITPNqz0YEeLmwL+E87yzVrTARESk+CkBimoqeLrzeuzEA0387yOa4cyZXJCIi5YUCkJjqroZB9G5eFasB/57zB5k5uhUmIiJFTwFITDfmnoYE+rhy6HQ6U349YHY5IiJSDigAiel8PZwZ++cCiZ/8fpjEtEyTKxIRkbJOAUhKhM4NA2le3Y+MnFz1AomISJFTAJISwWKx8ELncABmrIsj7swFkysSEZGyTAFISozI2v7cWrcSF60Gby/da3Y5IiJShikASYnyQud6APzwx0l2n0q97PWTyRlM/HkP+xLSirs0EREpQxSApERpVNWXbk2qYBjw1s95e4FWH0ii+3u/M3X5QR77YqNWjxYRkZtmegCaOnUqoaGhuLm5ERERwfr166/afs6cOYSHh+Pm5kbjxo1ZtGjRZW12795Njx498PX1xdPTk9atWxMXF1dUH0EK2b/urIujg4WYPYlsOHIWq9Vg6vIDPPzJOs6mZwMQd/YCn/x+2ORKRUSktDI1AM2aNYvhw4czevRoNm/eTNOmTencuTOJiYn5tl+zZg39+vXj0UcfZcuWLfTq1YtevXqxY8cOe5uDBw/SoUMHwsPDWbFiBdu2beOVV17Bzc2tuD6WFFCtSl7c3yoEgPGLdvPk15uY+PNerAbc17Ia4/vYVo+e8usBElI1ZV5ERG6cxTAMw6w3j4iIoHXr1kyZMgUAq9VKSEgIQ4YMYcSIEZe1j46OJj09nYULF9qPtW3blmbNmjFt2jQAHnjgAZydnfnqq69uuq7U1FR8fX1JSUnBx8fnpq8jNy8+JZOOE5eTddEKgIujA2N7NuSB1iEYBvSdtoYtccn0bVGNSfc3NblaEREpCW7k97dpPUDZ2dls2rSJqKiov4pxcCAqKorY2Nh8z4mNjc3THqBz58729larlZ9++om6devSuXNnKleuTEREBPPnz79qLVlZWaSmpuZ5iLmCfN0Y1L4mAMG+bsx5KpJ+bapjsVhwcLAw+p6GAHy3+ThbtIeYiIjcINMCUFJSErm5uQQGBuY5HhgYSHx8fL7nxMfHX7V9YmIi58+f54033qBLly788ssv9O7dmz59+rBy5cor1jJ+/Hh8fX3tj5CQkAJ+OikMz3eux2eDWrN42K00DfHL81qzED/ubVkNgLE/7sJqNa0jU0RESiHTB0EXJqvVdrukZ8+e/POf/6RZs2aMGDGC7t2722+R5WfkyJGkpKTYH8eOHSuukuUqHB0s3F6vMr4ezvm+/kLneni6OLL1WDLztpwo5upERKQ0My0ABQQE4OjoSEJCQp7jCQkJBAUF5XtOUFDQVdsHBATg5OREgwYN8rSpX7/+VWeBubq64uPjk+chJV9lHzeGdAoDYMKSPZzPumhyRSIiUlqYFoBcXFxo2bIlMTEx9mNWq5WYmBgiIyPzPScyMjJPe4ClS5fa27u4uNC6dWv27s27fsy+ffuoUaNGIX8CKQkGtQ8l1N+DxLQsPlihPcREROT6mHoLbPjw4Xz00Ud88cUX7N69m6effpr09HQGDRoEQP/+/Rk5cqS9/bBhw1iyZAmTJk1iz549jBkzho0bNzJ48GB7m+eff55Zs2bx0UcfceDAAaZMmcKPP/7IM888U+yfT4qeq5MjI7rWB2x7iGX/OWtMRETkapzMfPPo6GhOnz7NqFGjiI+Pp1mzZixZssQ+0DkuLg4Hh78yWrt27ZgxYwYvv/wyL774ImFhYcyfP59GjRrZ2/Tu3Ztp06Yxfvx4hg4dSr169fjuu+/o0KFDsX8+KR53NgiksrcriWlZ/LonkS6N8r+FKiIicomp6wCVVFoHqPQZv2g3H/52iDsbBPJR/1ZmlyMiIiYoFesAiRSmvn9OiV++J5Ez57NMrkZEREo6BSApE+oGetO4qi8XrQYL/jhpdjkiIlLCKQBJmXFpYcTvNh83uRIRESnpFICkzOjRNBhnRws7TqSyJ17bmYiIyJUpAEmZUcHThTvCKwPw3Sb1AomIyJUpAEmZ0reF7TbYvC0nuZirNYFERCR/CkBSptxWrzIVPV1IOp/Fqv1JZpcjIiIllAKQlCkuTg70aBoMwFwNhhYRkStQAJIy59JssKW7Eki5kGNyNSIiUhIpAEmZ0zDYh/Agb7IvWlm4XWsCiYjI5W4qAB07dozjx/+6vbB+/Xqee+45pk+fXmiFidwsi8ViHwz96sJdjPphB0fPpJtclYiIlCQ3FYD+8Y9/sHz5cgDi4+O58847Wb9+PS+99BLjxo0r1AJFbkZ0mxBa1qhAZo6VL2OPcttbK3j6601sjjtndmkiIlIC3FQA2rFjB23atAFg9uzZNGrUiDVr1vDNN9/w+eefF2Z9IjfFx82ZuU9FMuPxCG6rVwnDgMU74unz/hpG/bDD7PJERMRkNxWAcnJycHV1BWDZsmX06NEDgPDwcE6dOlV41YkUgMVioV3tAD4f1Iafn7uV+/4cHP3V2qOcSskwuToRETHTTQWghg0bMm3aNFatWsXSpUvp0qULACdPnsTf379QCxQpDPWCvJl4X1Pa1KyIYcD8LRocLSJSnt1UAJowYQIffvght912G/369aNp06YALFiwwH5rTKQk6tO8KgDfbz6OYRgmVyMiImaxGDf5WyA3N5fU1FQqVKhgP3bkyBE8PDyoXLlyoRVohtTUVHx9fUlJScHHx8fscqQQpWbm0Oq/y2xT5Id0oFFVX7NLEhGRQnIjv79vqgcoIyODrKwse/g5evQokydPZu/evaU+/EjZ5uPmzF0NAgH4TitFi4iUWzcVgHr27MmXX34JQHJyMhEREUyaNIlevXrxwQcfFGqBIoXt0hpBC7aeJEcbpoqIlEs3FYA2b97MLbfcAsDcuXMJDAzk6NGjfPnll7z77ruFWqBIYbslLIAALxfOpGfz277TZpcjIiImuKkAdOHCBby9vQH45Zdf6NOnDw4ODrRt25ajR48WaoEihc3J0YEeTS8Nhj5hcjUiImKGmwpAderUYf78+Rw7doyff/6Zu+66C4DExEQNGpZSoU8LWwBaulsbpoqIlEc3FYBGjRrFv//9b0JDQ2nTpg2RkZGArTeoefPmhVpgmXMx2+wKBNuGqfUCbRum/rRdi3eKiJQ3NxWA7r33XuLi4ti4cSM///yz/XinTp145513Cq24MidhF7zbDHb9YHYl5Z7FYrH3As3bknc22PFzF/jvwl18tvqwGaWJiEgxcLrZE4OCgggKCrLvCl+tWjUtgngtq/8PUk/A7P7QsA/c/RZ4auVss/RsVpU3luxhw5FzHD2TjrOjA1OXH2D2xmPk5NqWx+pQJ4CwQG+TKxURkcJ2Uz1AVquVcePG4evrS40aNahRowZ+fn68+uqrWK2aVnxFPd6FW/4NFkfY+T28HwG7fzS7qnIryNeNDnUCAHjmm83cNnEF36yLIyfXwNvN9t8GM9bHmVmiiIgUkZsKQC+99BJTpkzhjTfeYMuWLWzZsoXXX3+d9957j1deeaWwayw7nFyh0yvw2DKoFA7pp2HWQ/DdY3DhrNnVlUuXboPtPJlKdq6ViJoVmfVEW97tZxvL9t2m42Tm5JpZooiIFIGb2gojODiYadOm2XeBv+SHH37gmWee4cSJ0j21uFi2wsjJhJVv2G6LGVbwqQp9pkNoh6J5P8lXRnYuj3+5EathMPj2OkTW9sdisZBrNbj1zeWcSM7g7fub0ufPxRNFRKTkKvKtMM6ePUt4ePhlx8PDwzl7Vj0Z18XZDaLGwKNLoWJt29igL+6BX1+D3ItmV1duuLs48vVjEcx4vC3t6gRgsVgAcHSw0K9NCAAz1uk2mIhIWXNTAahp06ZMmTLlsuNTpkyhSZMmBS6qXKnWCp78DZo9ZOsJ+u1N+PxuSNYvXbPd3yoERwcLG4+eY19CmtnliIhIIbqpW2ArV66kW7duVK9e3b4GUGxsLMeOHWPRokX2bTJKK9N2g98+Fxb+E7JSwdUXer4HDXoW3/vLZZ78aiM/70xgYLtQxvRoaHY5IiJyFUV+C6xjx47s27eP3r17k5ycTHJyMn369GHnzp189dVXN1W0AI3vhadWQbXWkJVimy7/y8u6JWaif0TUAGw7x2dkazC0iEhZcVM9QFfyxx9/0KJFC3JzS/cvCtN6gC7JzYGYsbDmPdvz0Fvg3k/Bq3Lx11LOWa0GHd9azrGzGUy8twn3tQoxuyQREbmCIu8BkiLm6Ax3/Rfu+wJcvODIKvjwVji23uzKyh0HBwsPtK4OaE0gEZGyRAGoJGvYCx5fDgH1IO0UfHY3/D7Z1kMkxea+VtVwcrCwJS6Z3adSzS5HREQKgQJQSVepLjweAw16gTUHlo2GD9rBwV/NrqzcqOztxp0NAgH4MvYIyReyuZB9kZxcK4V4B1lERIrRDY0B6tOnz1VfT05OZuXKlRoDVBQMA7Z8DcvGwIUk27Hw7tD5NagQamZl5cKq/ad5+JPLb0FaLFA/yIcPH25JSEUPEyoTEZFLimwMkK+v71UfNWrUoH///gUqXq7AYoEWD8OQTRDxtG0/sT0LYWoExIyDjGSzKyzT2tcO4JawgMuOGwbsOpXKA9PXcuzsBRMqExGRm1Gos8DKihLZA/S/EnfD4hfg8G+2525+0OE5aPMkuKgnoqgYhkGu1SA710rORYOk9Cwe/2Ijh5LSqernzswn2qonSETEJKVuFtjUqVMJDQ3Fzc2NiIgI1q+/+mynOXPmEB4ejpubG40bN2bRokV5Xh84cCAWiyXPo0uXLkX5EYpf5frQfwFEf2PbWDUz2XZ77N1msP4juJhtcoFlk8ViwcnRAQ8XJ3w9nKldyYtvn2hLrQBPTiRnqCdIRKSUMD0AzZo1i+HDhzN69Gg2b95M06ZN6dy5M4mJifm2X7NmDf369ePRRx9ly5Yt9OrVi169erFjx4487bp06cKpU6fsj2+//bY4Pk7xsligfnd4eg30/hD8asD5BFj0b5h+GyQfM7vCciHQx00hSESklDH9FlhERAStW7e27y1mtVoJCQlhyJAhjBgx4rL20dHRpKens3DhQvuxtm3b0qxZM6ZNmwbYeoCSk5OZP3/+TdVUKm6B5ediNmz+AlZOgPTT4F0F/jEbqmh/tuKQkJrJA9PXcvjP22E/DG5PgJer2WWJiJQbpeYWWHZ2Nps2bSIqKsp+zMHBgaioKGJjY/M9JzY2Nk97gM6dO1/WfsWKFVSuXJl69erx9NNPc+bMmSvWkZWVRWpqap5HqeTkAm0ehydWQKX6f60dpCnzxSLQx42ZT7Ql1N+DE8kZ/GfuNk2TFxEpoUwNQElJSeTm5hIYGJjneGBgIPHx8fmeEx8ff832Xbp04csvvyQmJoYJEyawcuVKunbtesXp+ePHj88zmy0kpJRvd+BbDR5ZYttCIzsNvrkPtnxjdlXlQqCPGx881BIXRwdi9iTy9TqtHi0iUhKZPgaoKDzwwAP06NGDxo0b06tXLxYuXMiGDRtYsWJFvu1HjhxJSkqK/XHsWBkYO+PuBw99B43vB+tF+OEZWPGGbd62FKn6VXz4T9dwAP67cBcHEtNMrkhERP6XqQEoICAAR0dHEhIS8hxPSEggKCgo33OCgoJuqD1ArVq1CAgI4MCBA/m+7urqio+PT55HmeDkahsc3WG47fmK8TBnAGSdN7eucmBQu1BuCQsg66KVod9uJeti6V4cVESkrDE1ALm4uNCyZUtiYmLsx6xWKzExMURGRuZ7TmRkZJ72AEuXLr1ie4Djx49z5swZqlSpUjiFlyYODhA1Gnq8Bw7OsOsH+OQuOHfE7MrKNAcHC5Pua0oFD2d2nUpl0i/7zC5JRET+xvRbYMOHD+ejjz7iiy++YPfu3Tz99NOkp6czaNAgAPr378/IkSPt7YcNG8aSJUuYNGkSe/bsYcyYMWzcuJHBgwcDcP78eZ5//nnWrl3LkSNHiImJoWfPntSpU4fOnTub8hlLhBb9YeBP4FkZEnfapskfWmF2VWVaZR83JvS1zcCb/tshft+fZHJFIiJyiekBKDo6mrfeeotRo0bRrFkztm7dypIlS+wDnePi4jh16pS9fbt27ZgxYwbTp0+nadOmzJ07l/nz59OoUSMAHB0d2bZtGz169KBu3bo8+uijtGzZklWrVuHqWs6nJFePgCdXQnALyDgHX/WBVZMgS2NUispdDYPo16Y6AP+as5Vz6VqgUkSkJDB9HaCSqNSuA3S9cjJh4T/hjxm25y7e0DQaWj0KgQ3Mra0MupB9ke7v/c6h0+l0bhjItIdaYrFYzC5LRKTMKTXrAIlJnN2g1/u2cUH+dWxT5Td8DB9EwqddYec8zRYrRB4uTvxfdHOcHS38vDOBWRvKwCxDEZFSTgGovLJYbOOCBm+E/j9A/R62Hebj1sCcgfBpZzi5xewqy4zG1Xz51131ABj74y4OntZMPBERMykAlXcWC9S6DaK/gn/ugFtfAGdPOLYOpt8OC4bA+dNmV1kmPHFLLdrV9icjJ5fnZm4l+6LV7JJERMotBSD5i08w3PESDNloW0ARAzZ/Ce+1hLXTwKpf2AXh4GDh7fub4evuzPYTKby9VFPjRUTMogAkl/MJhr4fwSM/Q5WmkJUCS/4D3z0CORlmV1eqBfm6MaFvYwA+/O0gaw5qaryIiBkUgOTKqreFx5dD14m2RRR3zoPPu0FawrXPlSvq0qgKD7QOwTBg+Kw/OJKUbnZJIiLljgKQXJ2DI0Q8Af3ng3sFOLEJProD4rebXVmpNuqeBtQK8CQ+NZO7Jv/GlF/3a0yQiEgxUgCS6xPaAR6LAf8wSD0On3aBvUvMrqrU8nBx4stH23BLWADZF6289cs+7n53FRuOnDW7NBGRckELIeajzC+EWBAZ52D2ADi8ErBA+6Fw+0u2jVflhhmGwYI/TjLux12c+XOV6AdahzC0UxjBfu4mVyciUrrcyO9vBaB8KABdQ24OLBlhWzwRILAx9JmuVaQLIPlCNm8s3sPMPxdJdHSw0LVREI92qEnz6hVMrk5EpHRQACogBaDrtHsh/DgULpwBR1fbrvMRT9t2oJebsv7wWd5Zuo/YQ2fsx1pU9+PRDrW4u3GQttAQEbkKBaACUgC6AWkJtsUS9/9se17zVuj1AfhWM7euUm7nyRQ+W32EBVtPkp1rGxw9qH0oo+9paHJlIiIllwJQASkA3SDDgE2fwc8vQc4FcPWFuydCk/ttK03LTUtMy+SLNUeYuvwgAK/2bMjDkaHmFiUiUkJpM1QpXhYLtHoEnlwFVVvZFk6c94RtT7ELmtVUEJW93Xi+czjPd7btIzbmx12s2JtoclUiIqWfApAUnoA6ttWjb38ZHJxg13x4PxL2LzO7slLvmdtq07dFNXKtBoNnbGFvfJrZJYmIlGoKQFK4HJ2g4/Pw2DIIqAvn4+GbvjD3EUg5bnZ1pZbFYmF8n8ZE1KzI+ayLPPL5Bk6nZZldlohIqaUAJEUjuDk8+ZttVhgW2PEdTGkNK9/UfmI3ycXJgWkPtaRmgCcnkjN4/MuNnDmvECQicjM0CDofGgRdyE79AYv/A3Gxtud+1eGu/0L9HhokfRMOnT5P7/fXkJKRg8UCjav6cktYALeGVaJ59Qo4Olg4k55FUlo2SeezSM3MoVWNigT5uplduohIkdIssAJSACoChmHrBVo6ClJP2I5Vj4SosVA9wtzaSqFNR8/y8vyd7D6Vmue4i5MDF3OtWP/n/6udHCzc3bgKj3SoSbMQv+IrVESkGCkAFZACUBHKToffJ8Oa9+Din7fCwrtDp9FQqa6ppZVGCamZrNqfxKr9p/l9f5J9Ow2LBfw9XQjwcsXBYmHX34JS8+p+PNK+Jl0bBeHkqLvgIlJ2KAAVkAJQMUg9Cctfh63fgGEFiyO0eBjuGAWe/mZXVypZrQbHzl3A3cWRih4uecLNjhO2hRV//OOvhRWjW4Uw4d4mZpUrIlLoFIAKSAGoGCXugZixsHeR7bl3MPT9GELbm1tXGXU6LYuv1h7l3Zj9OFhg5fO3E1LRw+yyREQKhRZClNKjcjj0+xYGLQb/MEg7CV90h5UTwZprdnVlTiVvV4bfWZdbwgKwGvD5miNmlyQiYgoFICkZarSDJ1ZA0362W2LL/wtf9bbtNSaF7rFbagEwa8MxUjNzTK5GRKT4KQBJyeHqBb2n2TZTdfaAwythWnvY/BXkZJpdXZlya1gAYZW9OJ91kdkbjpldjohIsVMAkpKn2T/giZVQuSGkn4YFg2FyI1jxBpw/bXZ1ZYLFYuGxW2oC8NnqI1z8c2C0iEh5oQAkJVOluvB4DNz5KvhUswWhFePhnYbww2BIOmB2haVez2ZV8fd04URyBot3xJtdjohIsVIAkpLL2R3aD4VhW+HeT6FqS8jNgi1fwdQ2sGCI9hcrADdnRx6OrAHAx6sOoQmhIlKeKABJyefoDI36wmMx8MgvULcLGLmw+Ut4twUseRHSk8yuslR6qG0NXJwc+ON4CpuOnsvzWkJqJm8v3ceKvYkmVSciUnQUgKT0sFhs22b8Y5YtCNXoYOsRWjsV/q+pbYVpTZ2/IQFervRpXhWAj1cdBiAjO5d3Y/Zz+1sreDdmP4NnbCEjWz9XESlbFICkdKoeAQMXwsPzbDvPZ5+HZaPh825w9rDZ1ZUqj3SwDYb+eVc8H686xB2TVvD20n1cyM7FYoHzWRf5eafGCIlI2aIAJKWXxQK174DHl0PPqeDibdtxfloH2+0xjWm5LnUDvelYtxKGAf/9aTenUjKp6ufOu/2aM6xTGABzN2mslYiULQpAUvpZLND8IXh6NVRvZ+sNWjAEvu0H5zV+5Xo81bE2DhbwdHHk+c71iPlXR3o0DaZvi2oArD6YxInkDJOrFBEpPApAUnZUqGG7LXbnOHB0gX2LYWoEbJ+r3qBriKztzy//7Mjv/7mDZ2+vg5uzIwAhFT2IrOWPYcD36gUSkTJEAUjKFgdHaD/MdlsssBFknIXvHoVZD2lbjWuoU9mLCp4ulx2/r5WtF2ju5uOaKi8iZYYCkJRNQY1sIei2keDgBHsW2tYO+mOmeoNuUJdGQXi6OHL0zAU2HDl37RNEREoBBSApu5xc4LYRtm01qjSFzGSY9yS81xJmPQy/vgY7voOEXZB70exqSywPFye6NakCwNxN2jdMRMoGi6E+7cukpqbi6+tLSkoKPj4+ZpcjhSE3B1b/H6ycALnZl79esTb0mQ7VWhV/baXA+sNnuf/DWDxdHNnwchQeLk5mlyQicpkb+f1dInqApk6dSmhoKG5ubkRERLB+/fqrtp8zZw7h4eG4ubnRuHFjFi1adMW2Tz31FBaLhcmTJxdy1VKqODrDrf+G4bvhoe+h8+vQ/GGo1gZcvODsQfjkLlj5pnqD8tE6tAI1/D1Iz85l8XatCSQipZ/pAWjWrFkMHz6c0aNHs3nzZpo2bUrnzp1JTMx/+vKaNWvo168fjz76KFu2bKFXr1706tWLHTt2XNZ23rx5rF27luDg4KL+GFJaeAZAnU4Q+Sz0nAKPLYV/7rBttWHkwvLX4PO74dwRsystUSwWC/f+OSX+f9cESvxzy4wZ6+LMKE1E5KaYfgssIiKC1q1bM2XKFACsVishISEMGTKEESNGXNY+Ojqa9PR0Fi5caD/Wtm1bmjVrxrRp0+zHTpw4QUREBD///DPdunXjueee47nnnruumnQLrBwyDNg2Gxb9G7JSbYsqdhkPzR4EB9P/O6FEOJGcQYcJv2IYsOqF23FytDBtxUG+3XCM7ItWAGY/GUmbmhVNrlREyqtScwssOzubTZs2ERUVZT/m4OBAVFQUsbGx+Z4TGxubpz1A586d87S3Wq08/PDDPP/88zRs2PCadWRlZZGamprnIeWMxQJNo+Gp36F6JGSnwYLB8PEdcHSN2dWVCFX93GlX2x+AJ7/aRMc3V/BF7FGyL1qp+Of0+XELd2K1alihiJR8pgagpKQkcnNzCQwMzHM8MDCQ+Pj8xxnEx8dfs/2ECRNwcnJi6NCh11XH+PHj8fX1tT9CQkJu8JNImVGhBgz8Ce581dYLdHILfNbVNmvs7CGzqzPdvS1tt8F2nUolO9dKRM2KzHgsgl/+eSverk7sOJGqbTNEpFQoc337mzZt4v/+7//4/PPPsVgs13XOyJEjSUlJsT+OHdNU33LNwRHaD4Whm6HlILA4wO4FMKUNLHoe4i8fb1ZedG1UhTvCK3NbvUrMfKIts56MpF2dAAK8XBn6575hb/68l7TMHJMrFRG5OlMDUEBAAI6OjiQk5F2hNyEhgaCgoHzPCQoKumr7VatWkZiYSPXq1XFycsLJyYmjR4/yr3/9i9DQ0Hyv6erqio+PT56HCF6V4Z7J8NRq26ar1hxYPx2mtbdtuBr7Ppw/bXaVxcrN2ZFPB7bm80FtaFvLP89rA9qFUjPAk6TzWUxdftCkCkVEro+pAcjFxYWWLVsSExNjP2a1WomJiSEyMjLfcyIjI/O0B1i6dKm9/cMPP8y2bdvYunWr/REcHMzzzz/Pzz//XHQfRsquwAbw8Dzbo34P2z5j8dvh55HwdjjM7g/J6jV0cXLgpbvrA/Dp74c5eibd5IpERK7M9NXMhg8fzoABA2jVqhVt2rRh8uTJpKenM2jQIAD69+9P1apVGT9+PADDhg2jY8eOTJo0iW7dujFz5kw2btzI9OnTAfD398ffP+9/mTo7OxMUFES9evWK98NJ2VL7DtvjwlnbCtJ/fAsnNsGuH+DAr3DXq9ByoG1AdTnVqX5lbgkLYNX+JF5ftJsPH9bCkiJSMpk+Big6Opq33nqLUaNG0axZM7Zu3cqSJUvsA53j4uI4deqUvX27du2YMWMG06dPp2nTpsydO5f58+fTqFEjsz6ClDceFaHN4/D4r7bbY9Xa2GaNLXwOvuwJ546aXaFpLBYLr3RvgKODhZ93JrDmYBI5uVZOJGew6eg5Fm0/xdZjyWaXKSJi/jpAJZHWAZIbYs2FddMg5lW4mAHOntBpFLQcAM7uZldnilE/7ODL2KO4ODqQY7Vetv/s07fV5vm76uHgUH57y0Sk8JWadYBEygQHR9vK0k+vhhrtIScdlvwH3m4Ay8aUy/FB/4yqS4CXC9m5tvDj5GChqp87jav6AvDBioM8+fUm0rO07YiImEM9QPlQD5DcNKsVNn0Gv78DKX8GH4sDhHe3jQ+q2hLc/cyssNgknc8iPiWTQB83/D1d7L0987ec4IXvtpF90Ur9Kj58PKAVVf3KZ0+ZiBSuG/n9rQCUDwUgKTBrLuxdbLs1dmRV3td8qkJgQ6jcAELaQN2u5W67jc1x53jiy00knc8iwMuFDx9uRcsaFcwuS0RKOQWgAlIAkkKVsMu2ftCBGEjJZ8PQ5g/BPe/abqWVIyeSM3jsi43sPpWKi6MDr/ZqSHTr6maXJSKlmAJQASkASZHJTIHE3ZCwE079AVu+AsMKTR6AnlPB0fSVKYpVetZFhs/eys87bYubPhhRndH3NMTFqXz1iIlI4VAAKiAFICk2O76H7x4DIxca9YXeH4Kjs9lVFSur1WDq8gO8vWwfhgEta1Tg/QdbEOjjZnZpIlLKaBaYSGnRqA/c/wU4ONsWV5z7CFzMNruqYuXgYGFIpzA+HdAabzcnNh09R/f3fuf3/UmcTssiLTOHnFyr2WWKSBmjHqB8qAdIit3exbYtNXKzbYOi75kM3vnvh1eWHUlK58mvNrE3Ie2y1xwdLPh7utC7eVUealuDkIoeJlQoIiWZboEVkAKQmGL/Mpj5D8jNsk2dr3WbbWxQ/e7g4ml2dcUmPesio37YyU/bT5KZk3/Pj8UCt9WtRP/IUDrWraQFFUUEUAAqMAUgMc3RNbbFE4+t++uYsyc06AERT0Jwc9NKM4NhGGRdtJKZk0tmjpXtJ1L4au1Rftt32t6mekUP/nVXXXo0DcZSjvdhExEFoAJTABLTnT0E22bDHzPh3OG/jtfsCB3+aesdKse/7A8npfP12qPM2XiM1EzbatIta1RgVPcGNA3xM7c4ETGNAlABKQBJiWEYcHwDbPgYts+1zRYDqNIU2g2F6m3Bu0q5W0PokozsXD75/RDvrzjIhWzbz6Zvi2q80KWeZpGJlEMKQAWkACQlUnIcxE6FzV9CzoW/jjs4gW818A2BCqG2hRWrtzWtTDMkpGYyYckevt98AgAPF0c+6t+K9nUCTK5MRIqTAlABKQBJiZZ+BjZ8BNtm2UKRNZ8NRev3gDvHQsVaxV+fibYeS2bMgp1sPZZMgJcLi4bdQmVv9QSJlBcKQAWkACSlhjUX0uJtQSg5Do78Bltn2FaXdnCGNo/Drc+DR0WzKy02mTm59Jq6mj3xaXSoE8CXj7TRLDGRckIBqIAUgKRUS9gFS1+BA8tsz918IeIp2270PsGmllZcDiSmcc97q8nIyeU/XcJ5+rbaZpckIsVAK0GLlGeBDeCh7+Ch76FyQ9v+YysnwDuNbIstHv7NNri6DKtT2ZsxPRoAMOmXvWyJO2dyRSJS0igAiZRVdTrBU6vg3k+hejvbDLJdP8AX98DUCNjyje0WWhl1f6sQujepwkWrwZBvt5CSkWN2SSJSgigAiZRlDo62TVYfWQxPrYZWj9gWVkzaCz88Ax/eartVVgZ7hCwWC6/3aUxIRXeOn8vgxXnb0R1/EblEY4DyoTFAUqZlpsLGT+H3t223x8C2sOKd42zrC5UxW+LOcd+0WC5aDTo3DGRgu5q0rVVRq0aLlEEaBF1ACkBSLlw4C6smwfrptk1YAcLusvUY1bsb3MrO//Y//f0w4xbusj+vG+hF/8hQejeviqerk4mViUhhUgAqIAUgKVfOHYGYV2HH3L+OObpC2J3QqI9td3qX0r/z+p74VL6MPcq8zSfIyLGNffJ2dWJcr4b0bl7tiuclX8jm09VHuL1eJZpXr1Bc5YrITVAAKiAFICmXTu+DHd/ZHmf2/3XcvYJt7FCbJ8A7yLz6CklKRg5zNx3n67VHOZyUjsUCE/o24f5WIZe1TUzL5OGP17M3IQ13Z0dmPdmWJtX8ir9oEbkuCkAFpAAk5ZphQMIO2PG9rVcoOc523NEFGt8Hkc9CYENzaywEVqvB6AU7+WrtUVsI6tOE+1v/FYJOJGfw0MfrOJyUbj8W4OXC90+3p7p/6e8REymLtA6QiNw8iwWCGkPUaBi6Fe7/CkIibOOEtn4DH7SDz7vbdqvPyTC72pvm4GBhXM+GDIisgWHAC99tY9YGW9g7dPo8932whsNJ6VT1c+enoR1oUMWHpPPZDPhsPWfTs02uXkQKSj1A+VAPkEg+jm2A2Pdg94+2rTYAXH2hcV/bBqzBLWzhqZQxDIOxP+7i8zVHABhyRx2+XR9H0vlsalXy5JvHIqji605iaia931/DieQMmlf3Y8ZjbXF3cTS3eBHJQ7fACkgBSOQqkuNs+41t+QZS4v467h8G9e+xPYKbl6owZBgG4xbu4rPVR+zHGlTx4ctH2xDg5Wo/diAxjb4fxJKSkcOdDQJ5vXdjdp1KZceJFLYdT2ZPfBod61ZibI+GmmYvYgIFoAJSABK5DlYrHFkFW76G3QvgYuZfr/lUg/rdoUk0VG1hXo03wDAMXvtpNx//fpgW1f34bFAbfN2dL2u38chZ/vHxOrIvWq94rQl9GxPdunpRlisi+VAAKiAFIJEblJkC+5fagtD+ZZBzaeCwBe54CTr8CxxKx5DDw0nphFRwx8nxyvUu3n6Kwd9uIddqUCvAk0ZVfWlSzZf4lEw+/v0w7s6O/DikA3UqexVj5SKiAFRACkAiBZCTAYdW2G6T7V5gO1a3C/SeZptSX0Ykpmbi5uKIj9tfvURWq8HDn65j9YEzNAz24ftn2uHqpHFCIsVFs8BExDzO7lCvK0R/BT2ngpMb7FsCH3aEU3+YXV2hqezjlif8gG1m2dv3N6OChzM7T6Yycclek6oTkWtRABKRotP8IXj0F/CrAclH4ZO7YPX/weHf4OxhuFj2ppMH+rgx8V7bnmof/36YFXsTTa5IRPKjW2D50C0wkUKWcQ6+fxL2//w/L1jAuwoEhNl6jcK7gV/ZGDw86ocdfBl7lAAvFxYPu5VK3q7XPklECkRjgApIAUikCFitto1X9/9sm0qfcjzvzLFLgpr8OZ2+B1QOL/46C0lmTi49p6xmb0IadQO9uK9lCHc1DKSGv2eedtkXrWw/kcz6w+fw93ShT4uqVx2ALSJXpgBUQApAIsXAMCD9NCQfg2NrYc9PEBf71yKLAA16wh2jIKCOeXUWwN74NPp+sIbzWRftx8KDvLmrQSAuTg6sPXSWTUfP2TdnBWhU1Yc3+zalQbD+7RG5UQpABaQAJGKS9CTYu9i22vT+XwADLI7QcgB0/E+p3Iw1MTWTxTvi+WVXPGsPnSXXevk/uRU9XWhZowLrD58lJSMHJwcLT99Wm8F31NEsMpEboABUQApAIiVAwk5YNvavcUPOHtBiAHj6gwF//h9w9YamD5SKKfbJF7L5dU8iMXsSwYCIWhVpW8ufOpW8cHCwkJiWyaj5O1myMx6AsMpevNG3CS1rlPzPJlISKAAVkAKQSAly5HdYOhpObLxyGw9/iBoLzR4sNQsuXs2i7acY9cMOks7bZsl1aRjEP++sS70gb5MrEynZSt06QFOnTiU0NBQ3NzciIiJYv379VdvPmTOH8PBw3NzcaNy4MYsWLcrz+pgxYwgPD8fT05MKFSoQFRXFunXrivIjiEhRCe0Ajy2D6K+h5UBo0d/WE9RigO15QD24cAYWDIZP74KTW00uuODublyFpf/syH0tq2GxwJKd8XT5v98Y+u0WDp0+b3Z5ImWC6T1As2bNon///kybNo2IiAgmT57MnDlz2Lt3L5UrV76s/Zo1a7j11lsZP3483bt3Z8aMGUyYMIHNmzfTqFEjAGbMmEHlypWpVasWGRkZvPPOO8yZM4cDBw5QqVKla9akHiCRUiQ3B9ZNgxVvQPZ5wGILRo36QnAz2y2yUmxfQhqTl+1j0XbbbTEHC9zbshovd29w2UKMIuVdqboFFhERQevWrZkyZQoAVquVkJAQhgwZwogRIy5rHx0dTXp6OgsXLrQfa9u2Lc2aNWPatGn5vselH8iyZcvo1KnTNWtSABIphVJPwS8vw465fx2zOEClcNuGrNVaQ/g9tjFEpdDOkym8s3Qfy3bbFlasGeDJBw+1IDxI/0aJXFJqboFlZ2ezadMmoqKi7MccHByIiooiNjY233NiY2PztAfo3LnzFdtnZ2czffp0fH19adq0aeEVLyIli08VuPcTGPgTNOhl25HesELiLtuO9T8Og7frw7yn4cQms6u9YQ2Dffl4QGvmPBVJsK8bh5PS6TV1NfO2HDe7NJFSycnMN09KSiI3N5fAwMA8xwMDA9mzZ0++58THx+fbPj4+Ps+xhQsX8sADD3DhwgWqVKnC0qVLCQgIyPeaWVlZZGVl2Z+npqbezMcRkZIgtIPtAZAWbws7JzbZdquP3wZ/zLA9gltAm8dtaw25eF79miVI69CKLBx6C8NmbmHV/iT+OesPNh09xyvdG2jKvMgNKBGDoIvC7bffztatW1mzZg1dunTh/vvvJzEx/z15xo8fj6+vr/0REhJSzNWKSJHwDrJtr9FpFDz5Gzy6DJpEg6MLnNwM85+GN2vDrIdhx3eQVToGGFf0dOHzQW0Y2ikMgK/XxnH/tFj2J6SZXJlI6WFqAAoICMDR0ZGEhIQ8xxMSEggKyn/Bs6CgoOtq7+npSZ06dWjbti2ffPIJTk5OfPLJJ/lec+TIkaSkpNgfx44dK8CnEpESyWKBkNbQZzr8cxfc8Yptk9aLGbB7Acx9BCbWhpkPwvqP4NQ2yL147euaxNHBwvA76/LZwNb4ujvzx/EU7n53FZN+2Uvm31aWFpH8mRqAXFxcaNmyJTExMfZjVquVmJgYIiMj8z0nMjIyT3uApUuXXrH936/799tcf+fq6oqPj0+eh4iUYV6V4NZ/w7A/4ImV0GE4VKxl25tsz0JY9G/48BaYUAO+6AG/vgan95lddb5uD6/M4mG30Cm8Mjm5Bu/9eoCu/7eKNQeTAMjJtRJ78AzjF+3mzrdX0mj0z/bXRMoz02eBzZo1iwEDBvDhhx/Spk0bJk+ezOzZs9mzZw+BgYH079+fqlWrMn78eMA2Db5jx4688cYbdOvWjZkzZ/L666/bp8Gnp6fz2muv0aNHD6pUqUJSUhJTp05lxowZbNq0iYYNG16zJs0CEymHDAMSdsCeRba9yY5vhKy/jQe0OEKrQXDbSPDMfzyhmQzDYMmOeEYv2Elimu0/9lqHVmDPqTTSsvL2ZIVUdOeX5zri7qIxQ1K23Mjvb1MHQYNtWvvp06cZNWoU8fHxNGvWjCVLltgHOsfFxeHwt5Vd27Vrx4wZM3j55Zd58cUXCQsLY/78+fY1gBwdHdmzZw9ffPEFSUlJ+Pv707p1a1atWnVd4UdEyimLBYIa2x4A1lw4vQeOrYe9i2x7k234GP6YBbf+CyKeBmc3c2v+G4vFQtfGVWgfFsDEJXv5et1RNhw5B4C/pwsd61WiY91KvLF4D8fOZjA5Zh8ju9Y3uWoR85jeA1QSqQdIRC5zeBX88hKc+sP23DcEGvWx/ekbAn4h4FsN3HzNrfNP244ns+noOVpUr0Djqr44OFgAWLYrgce+3Iijg4UFg9vTMPjm6jUMg9iDZ1i4/RT3taxG8+rar0zMV6oWQiyJFIBEJF9WK2yfAzFjIfVE/m0q1IR6XaFuF6jRDhxL3mrNz3yziUXb42lSzZd5z7TH8c9wdD0u5lpZvCOeD387yI4TtluEvu7OLBzSgZCKHkVVssh1UQAqIAUgEbmqnAz441s4vRdSjkNynO3PjLN527n6Qp1O0Pwh258lRGJqJp3eXkla5kVGdW/AIx1qXvOcnFwrM9fH8dGqw8SdvQCAm7MDAV6uHD+XQf0qPnz/dDuNKxJTKQAVkAKQiNyUzBQ4tBL2LYF9P8OFv822anw/dHmjxGzF8c26o7w0bwceLo4sHd6Rqn7uV2ybmZPL019vYvne0wBU8HBmQLtQ+keGkpmTyz3v/c6Z9Gx6NQvmnehmWCzX36MkUpgUgApIAUhECsxqta1AvX22bfC0YQWPAOj2FjTsbXZ1WK0G0dNj2XDkHHeEV+aTAa3yDS7nsy7y2BcbWHvoLG7ODozoEk506+p5enrWHjrDgx+vI9dqMPqeBgxqf+0eJZGioABUQApAIlKoTmyC+c/C6d225/XvgdaP27bqSImD5GO2W2jZ6bYxQ47O4PDnnxVCIfJZ8Aku9LIOJKbR9f9WkZNr0Kd5VYZ2CiM04K9tQVIu5DDgs/VsPZaMl6sTnw5sTZuaFfO91ie/H+bVhbtwdLAw47EIImqVjJ4uKV8UgApIAUhECt3FLFg1yfaw3uAK005u0OYJ6PBP8Mg/gNysD1ceZPxi296Ljg4WejYLZsgdYXi7OfHwJ+vZfSoVPw9nvhjUhqYhfle8jmEYPDdrKz9sPUmAlws/DulAFd8r31YTKQoKQAWkACQiRebUNvj5RVuPj1/IX9PoL02ht+ZA7qVHFmybY1uYEcDVB9oNhbZPg6tXoZW0Je4c/xeznxV/jvFxsEBFT1eSzmcR4OXK14+1ITzo2v8WXsi+SJ/317AnPo0GVXz49om2+LqXvFlwUnYpABWQApCIlBiGYVuEMeZVSNhuO+bgbNvo1Svwrz8r1oR6d4N/7Zt+q63Hknk3Zj+/7rFtHB3s68Y3j7el5t9ui11L3JkL9PlgNUnns2lVowJfPtoGDxfT19yVckIBqIAUgESkxLFaYef3sPw1OHvoyu2qNIWGfaBhL9v4oWvJOg9J+yC4uW01bGD78RR+3ZPIfa2qEXyV2WFXsutkKtHTY0nLvMgtYQF8PKAVrk6aHi9FTwGogBSARKTEsloh9TikJcD5eNtA6vOJcHwDHP4NjL/tBB/cHOp1g7qdbVt8XJrlZRhwYjNs/gJ2fAfZ56HpP6DnFHAonKCy6ehZHvp4PRk5uXRtFMR7/Zrj5Gjq/ttSDigAFZACkIiUSulJsPtHW0/Rkd9tU+8v8Q62BaEKobBtNiTuvPz8Zg9Bj/fAoXCCyqr9p3n0841k51q5r2U1JvRtYt+SQ6QoKAAVkAKQiJR65xNh72LbgoyHlkPOhbyvO7lBg17Qor+tJ+m7x229R4UcgpbsOMUz32zGakAVXzdcnBxwsFiwWMDRYqFX86o8c1ttLZ4ohUIBqIAUgESkTMnJhCOrbCtUnz1s26us8b3g/rcNTHd8B989Zus1av4Q3FN4IWjupuO8MPcPrFf4bfPS3fV5/NZahfJeUr4pABWQApCIlEvb58L3j9tCUIv+0PVNcC6ctXziUzI5lZKB1bCtGWQ1YM3BJCYv24/FAu//owVdG1e56jWsVoP41EyOnrnAsbMXCKnoQWRtLbgof7mR39+amygiIjaN77UNkJ73BGz+ErZ8Df51ILARBDaEoCYQ2gFcbnzX9yBfN4J83fIcax1agXPp2XwRe5TnZm0l0NeNFtUr5Glz9Ew678YcYMuxcxw/m0F27l/jmiwWmPl4W606LTdFPUD5UA+QiJRrO76DJSPhfMLlr7l4Q6Pe0OxBCIn4a2ZZxjnbmKOd822z0SrVs/UiNb7XtsDjFeRaDZ74ciMxexLx93Rh3jPtqe7vwbn0bN79dT9frz1KTu5fv6acHCxUq+COo4OFg6fTqernzqJht2jBRQF0C6zAFIBEpNwzDFsAit8BCX8+4tbZ9i67pGItaNDT1ubQCtsq1v/L2cO2+WuL/uDqbVtzKOkAnNlvW8/IrzqZYd35xwpvNp/KplYlT/q2qMa0lQdJy7RtGXJr3Uo82qEmtQI8CfazhZ/zWRe5+/9WEXf2Aj2bBfN/DzQvnp+LlGgKQAWkACQikg+rFeJiYesM2DkPctLzvl65gS0Qhd0JcWth0xeQtPe6Lm04ufOrtTnfZbbiV2tzMnGlfhUfXrw7nFvCKuV7zua4c9w3LZZcq8Hk6Gb0al61oJ9QSjkFoAJSABIRuYas87Y1hw4sg0rhtuBTqW7eNoYBx9bbFlzcOc+2u71/GATUhYA6tjWJTm6FXfMh+a+epRS8OF5vAOE9/o2j59U3f528bB+Tl+3H29WJRcNuIaTijY9PkrJDAaiAFIBERArZpV81+a33Yxhwcgvsmo+x43ssKcdsx128oOVAiBwMPlVsoev0nj9vye0CDHIDwnkp1uDHU340DK3Kt0+0xdHBwoXsi8QePMPKfadJSM2kiq871Sq4U9XPnaoV3KlR0RNfD40bKmsUgApIAUhExCS5F209Qr+/Yws6AI4u4BMM545c9dQ4ayWSvcM44lCN1ef82Z0bzEEjmHTyn8ofVtmL1jUr0ia0Iq2DXah6Me6voHaJe4UCbTArxUsBqIAUgERETGYYsH8prJoEx9b+ddwr0DYlv3IDsDhA4i5I2Alpp654qVT3EA54t2a9U0tWZodzMAUS07JwJZvbHbbS3TGWTg5bcLdk53t+VpOHcb3nLXB2y/d1KTkUgApIAUhEpAQ5uQUyU23BxzMg3yZG+hnmLPqZnPhdtHBPINQ4jlvyASzpiXkbOrpA9UiyXCrgePAXnC7+tUXIacOXDMMlT/NqliQcLAbp/o3xfHgG+FW/vppzL0L8NtsaSk4u124vhUIBqIAUgEREyogLZ20DsQ8stfUoJR/N+7pvdWjUm4x6PTlgqU1yZg7JF3JIzsghOT2bo+t/5KXMSVSwnCfTyReX6M9wCOt05ffLvQjbZ8NvE23T/IOawL2fQkDY9ddszYVdP9jODahzc5+7nFIAKiAFIBGRMsgw4MxBWxi6cAbqdoGqLfMfmP2ntMwcJs5eRt8DL9LU4RBWLGS2ex6PZn3BO8i2yKPFArk5sG0W/PYWnDuc9yLOHtDlDXKbPcymuGQaVfXBw+UKGzFYrbBgMGz9xjYIvN9MqHlLIf4QyjYFoAJSABIRkUsMw2D22gMYi//DAw4xeV909rAFoZxMSDtpO+YRAO2HQnh3WPhPOLwSgFXO7Xk2bQABlQL5uH8ralXy+t83srXf9Nlfxxxd4f4voV6XIvyEZceN/P4unK1+RUREyiiLxUJ0ZBhNn/6cN9yGsdsaQiqethdzLthudaWdBM9KcOer8Nw2aD8M/Gtztu9sFgU9TY7hyC05q1nsOpKwM8vpNXUVy/f+bXySYcCSEX+GHwv0nAr17obcLJj1IGybY8pnL8vUA5QP9QCJiEh+UjNzeOjjdWw7nkKIF8z8RyhVHZIhOx1C24OLLRhZrQazNh5jwpI9JF/IobHlEJ96f0Cl7BMAHLAG82Fud+pGPcpjHetiWTYa1rxre5OeU6H5Q7bbavOfsY0pwgLd3oLWj0FGsm2JgPjttllw/mG24zexSW1Zo1tgBaQAJCIiV3IuPZsHpq9lb0IaVf3cmf1UJFX9/lpraNX+07y+aA+7T6UCEB7kzau9GtG6igv8/g7G+ulYsmyvnTQqEu/TlBZpy20nd38HWj3y15tZrbD4Bdjwke25TzVIPX55Ud7B0OkVaPIAOFznzZ2sNMACrl7XbFpaKAAVkAKQiIhcTWJaJg98uJZDSenUDPBk1pNtSUrL5o0le/ht32kAvF2dGBYVxsB2oTg5/i2UZKZibPyMjN/exSM7yX7Y2nk8DpHPXP5mhgG//hdWvfXXMd/qENTYNktsx7y/NqkNagx3vQa1OtrOy0yG9DNwIcm2kGTiLkjcDYl7bOc4ONv2bmt8H9TrCs75LBppGGBYwcGx4D+4IqYAVEAKQCIici0nkzO4b1osJ5IzCPBy5Ux6FoYBzo4WHm4byuA76lDR8yprAOVkciDmY1Jiv2TexXYE3P4Mz0XVzbfprpOpTP38c4K8XXioV3dqhlTLcx3Wfwi/TYKsFNsxjwBb+LFevP4P5OIN9e+Baq1se7OdPfTXw7BC3c7QqC+E3ZV/UMrPxSzbtfzrXHW2XWFRACogBSAREbkeR8+kc/+HsSSkZgHQvUkVnu9cjxr+ntd9je83H2f47D+wWODzQW3oWLdSntcPJ6Vz37Q1JJ23rVTt6uTA8Dvr8tgttXB0+FuoSD8DKyfAxk/yBh8Xb/D0B5+qULm+7VHpzz/PJ8C22bB97l+9SNfi4gXh3aB+Dwhubtum5O/hxmqFuDW26+6aD5kptuDU4z37GKmiogBUQApAIiJyvY4kpfPt+ji6Nq5CsxC/m7rGyO+38+36OCp4OLNw6C32MUV/72VqUMUHfy8XVu233TZrGuLHxHubUDfQO+/F0uLhfKJt1Wz3ite3hYfVCsfWwfY5kHIMKoRCxVpQsbbtz+w02DkPdnxve/3v3HyhckPbSt1OrrBzfv7jlCo3gPu/KtLFHRWACkgBSEREilNmTi73TlvDjhOpNAvxY/aTkaRm5nD/h7EcOp1OrQBPZj8Vib+nC3M2HufVn3aRlnkRF0cH+rasSpNqfjSo4kO9IG/cnItwrI5hwPENsOM7OLQSzuzP/zabqw806AGN77eNHZr7iK23ydUHek+z9SAVAQWgAlIAEhGR4nbs7AW6v/c7KRk5PNA6hO0nUth5MpWqfu7MeSqS4L/NNItPyeTFedv5dU/evc4cHSzUruRJp/qBDL0jDHeXIh64fDELkvbZNqRN2GnbeiTsTtsq23/veUqLhzkDIS7W9rzDcLjj5UIfWK0AVEAKQCIiYoaY3Qk8+sVG+/MALxdmPxl5+arR2FaoXrH3NGsPnWHXqVR2nkzlbPpfO9qH+nsw8b6mtA6tWCy1X1NuDvzyCqz7wPa80b1w7yeF+hYKQAWkACQiImZ5c8ke3l9xEG83J2Y+0ZaGwb7XdZ5hGCSkZrHu8BneWLyHUymZWCzwaPua/LtzvZu6NRafksmy3QkcP5dBzQAP6lT2pk5lL3zdnW/4Wnbb59q2/Ij+CmrddvPXyYcCUAEpAImIiFlyrQaLd5yiYbAvNQNubtZUamYO/124i9kbbYORawV4Mqh9KKfPZ3PiXAYnkzM4kZyBxQJ1A70JD/KmXpA34UE+ZF+0smx3Akt3JbD9REq+16/k7UqTqr6M6BpO2P8Owr4eGefAvcJNfbarUQAqIAUgEREpC5bvSWTE99vs0/RvlMUCzUP8aBDsw9EzFziQeJ5TKZn2112dHHi5ewMeiqiOpRjW+bmWUheApk6dysSJE4mPj6dp06a89957tGnT5ort58yZwyuvvMKRI0cICwtjwoQJ3H333QDk5OTw8ssvs2jRIg4dOoSvry9RUVG88cYbBAcHX1c9CkAiIlJWpFzIYXLMPg4npRPs505VP3eC/dyo6ufBRauVvfFp7I1PY3d8Gvvi07AaBreEBXBng0DuCA+kkrdrnuudz7rI/oQ0Ji/bz8o/V72Oqh/Im/c2ufrCj8WgVAWgWbNm0b9/f6ZNm0ZERASTJ09mzpw57N27l8qVK1/Wfs2aNdx6662MHz+e7t27M2PGDCZMmMDmzZtp1KgRKSkp3HvvvTz++OM0bdqUc+fOMWzYMHJzc9m4cWM+FVxOAUhERMojq9XAahh5t+64StvP1hxhwuI9ZOdaqeztyht9GxNW2du2ewYGVgOshsHFXIOcXCsXrQYXc61k51qp6ud+QwtGXo9SFYAiIiJo3bo1U6ZMAcBqtRISEsKQIUMYMWLEZe2jo6NJT09n4cKF9mNt27alWbNmTJs2Ld/32LBhA23atOHo0aNUr179mjUpAImIiFyfnSdTGPrtFg6eTr+h8wbfXod/d65XqLXcyO/v69wytmhkZ2ezadMmoqKi7MccHByIiooiNjY233NiY2PztAfo3LnzFdsDpKSkYLFY8PPzy/f1rKwsUlNT8zxERETk2hoG+7JwyC083LYGXq5OuDk74OHiiKeLI16uTni7OVHR04XK3q5U9XMn1N+DsMpe+HkUYCZZIXAy882TkpLIzc0lMDAwz/HAwED27NmT7znx8fH5to+Pj8+3fWZmJv/5z3/o16/fFdPg+PHjGTt27E18AhEREXF3ceTVXo14tVcjs0u5bqb2ABW1nJwc7r//fgzD4IMPPrhiu5EjR5KSkmJ/HDt27IptRUREpPQztQcoICAAR0dHEhIS8hxPSEggKCgo33OCgoKuq/2l8HP06FF+/fXXq94LdHV1xdXV9Yqvi4iISNliag+Qi4sLLVu2JCYmxn7MarUSExNDZGRkvudERkbmaQ+wdOnSPO0vhZ/9+/ezbNky/P39i+YDiIiISKlkag8QwPDhwxkwYACtWrWiTZs2TJ48mfT0dAYNGgRA//79qVq1KuPHjwdg2LBhdOzYkUmTJtGtWzdmzpzJxo0bmT59OmALP/feey+bN29m4cKF5Obm2scHVaxYERcXc9coEBEREfOZHoCio6M5ffo0o0aNIj4+nmbNmrFkyRL7QOe4uDgcHP7qqGrXrh0zZszg5Zdf5sUXXyQsLIz58+fTqJFt4NWJEydYsGABAM2aNcvzXsuXL+e2224rls8lIiIiJZfp6wCVRFoHSEREpPQpNesAiYiIiJhBAUhERETKHQUgERERKXcUgERERKTcUQASERGRckcBSERERModBSAREREpdxSAREREpNwxfSXokujS2pCpqakmVyIiIiLX69Lv7etZ41kBKB9paWkAhISEmFyJiIiI3Ki0tDR8fX2v2kZbYeTDarVy8uRJvL29sVgsN32d1NRUQkJCOHbsmLbUKCH0nZQ8+k5KHn0nJZO+l2szDIO0tDSCg4Pz7COaH/UA5cPBwYFq1aoV2vV8fHz0P9YSRt9JyaPvpOTRd1Iy6Xu5umv1/FyiQdAiIiJS7igAiYiISLmjAFSEXF1dGT16NK6urmaXIn/Sd1Ly6DspefSdlEz6XgqXBkGLiIhIuaMeIBERESl3FIBERESk3FEAEhERkXJHAUhERETKHQWgIjJ16lRCQ0Nxc3MjIiKC9evXm11SuTF+/Hhat26Nt7c3lStXplevXuzduzdPm8zMTJ599ln8/f3x8vKib9++JCQkmFRx+fPGG29gsVh47rnn7Mf0nZjjxIkTPPTQQ/j7++Pu7k7jxo3ZuHGj/XXDMBg1ahRVqlTB3d2dqKgo9u/fb2LFZVtubi6vvPIKNWvWxN3dndq1a/Pqq6/m2dtK30nhUAAqArNmzWL48OGMHj2azZs307RpUzp37kxiYqLZpZULK1eu5Nlnn2Xt2rUsXbqUnJwc7rrrLtLT0+1t/vnPf/Ljjz8yZ84cVq5cycmTJ+nTp4+JVZcfGzZs4MMPP6RJkyZ5jus7KX7nzp2jffv2ODs7s3jxYnbt2sWkSZOoUKGCvc2bb77Ju+++y7Rp01i3bh2enp507tyZzMxMEysvuyZMmMAHH3zAlClT2L17NxMmTODNN9/kvffes7fRd1JIDCl0bdq0MZ599ln789zcXCM4ONgYP368iVWVX4mJiQZgrFy50jAMw0hOTjacnZ2NOXPm2Nvs3r3bAIzY2FizyiwX0tLSjLCwMGPp0qVGx44djWHDhhmGoe/ELP/5z3+MDh06XPF1q9VqBAUFGRMnTrQfS05ONlxdXY1vv/22OEosd7p162Y88sgjeY716dPHePDBBw3D0HdSmNQDVMiys7PZtGkTUVFR9mMODg5ERUURGxtrYmXlV0pKCgAVK1YEYNOmTeTk5OT5jsLDw6levbq+oyL27LPP0q1btzw/e9B3YpYFCxbQqlUr7rvvPipXrkzz5s356KOP7K8fPnyY+Pj4PN+Lr68vERER+l6KSLt27YiJiWHfvn0A/PHHH/z+++907doV0HdSmLQZaiFLSkoiNzeXwMDAPMcDAwPZs2ePSVWVX1arleeee4727dvTqFEjAOLj43FxccHPzy9P28DAQOLj402osnyYOXMmmzdvZsOGDZe9pu/EHIcOHeKDDz5g+PDhvPjii2zYsIGhQ4fi4uLCgAED7D/7/P490/dSNEaMGEFqairh4eE4OjqSm5vLa6+9xoMPPgig76QQKQBJmfbss8+yY8cOfv/9d7NLKdeOHTvGsGHDWLp0KW5ubmaXI3+yWq20atWK119/HYDmzZuzY8cOpk2bxoABA0yurnyaPXs233zzDTNmzKBhw4Zs3bqV5557juDgYH0nhUy3wApZQEAAjo6Ol81eSUhIICgoyKSqyqfBgwezcOFCli9fTrVq1ezHg4KCyM7OJjk5OU97fUdFZ9OmTSQmJtKiRQucnJxwcnJi5cqVvPvuuzg5OREYGKjvxARVqlShQYMGeY7Vr1+fuLg4APvPXv+eFZ/nn3+eESNG8MADD9C4cWMefvhh/vnPfzJ+/HhA30lhUgAqZC4uLrRs2ZKYmBj7MavVSkxMDJGRkSZWVn4YhsHgwYOZN28ev/76KzVr1szzesuWLXF2ds7zHe3du5e4uDh9R0WkU6dObN++na1bt9ofrVq14sEHH7T/Xd9J8Wvfvv1lS0Ts27ePGjVqAFCzZk2CgoLyfC+pqamsW7dO30sRuXDhAg4OeX81Ozo6YrVaAX0nhcrsUdhl0cyZMw1XV1fj888/N3bt2mU88cQThp+fnxEfH292aeXC008/bfj6+horVqwwTp06ZX9cuHDB3uapp54yqlevbvz666/Gxo0bjcjISCMyMtLEqsufv88CMwx9J2ZYv3694eTkZLz22mvG/v37jW+++cbw8PAwvv76a3ubN954w/Dz8zN++OEHY9u2bUbPnj2NmjVrGhkZGSZWXnYNGDDAqFq1qrFw4ULj8OHDxvfff28EBAQYL7zwgr2NvpPCoQBURN577z2jevXqhouLi9GmTRtj7dq1ZpdUbgD5Pj777DN7m4yMDOOZZ54xKlSoYHh4eBi9e/c2Tp06ZV7R5dD/BiB9J+b48ccfjUaNGhmurq5GeHi4MX369DyvW61W45VXXjECAwMNV1dXo1OnTsbevXtNqrbsS01NNYYNG2ZUr17dcHNzM2rVqmW89NJLRlZWlr2NvpPCYTGMvy0vKSIiIlIOaAyQiIiIlDsKQCIiIlLuKACJiIhIuaMAJCIiIuWOApCIiIiUOwpAIiIiUu4oAImIiEi5owAkInIFFouF+fPnm12GiBQBBSARKZEGDhyIxWK57NGlSxezSxORMsDJ7AJERK6kS5cufPbZZ3mOubq6mlSNiJQl6gESkRLL1dWVoKCgPI8KFSoAtttTH3zwAV27dsXd3Z1atWoxd+7cPOdv376dO+64A3d3d/z9/XniiSc4f/58njaffvopDRs2xNXVlSpVqjB48OA8ryclJdG7d288PDwICwtjwYIF9tfOnTvHgw8+SKVKlXB3dycsLOyywCYiJZMCkIiUWq+88gp9+/bljz/+4MEHH+SBBx5g9+7dAKSnp9O5c2cqVKjAhg0bmDNnDsuWLcsTcD744AOeffZZnnjiCbZv386CBQuoU6dOnvcYO3Ys999/P9u2bePuu+/mwQcf5OzZs/b337VrF4sXL2b37t188MEHBAQEFN8PQERuntm7sYqI5GfAgAGGo6Oj4enpmefx2muvGYZhGIDx1FNP5TknIiLCePrppw3DMIzp06cbFSpUMM6fP29//aeffjIcHByM+Ph4wzAMIzg42HjppZeuWANgvPzyy/bn58+fNwBj8eLFhmEYxj333GMMGjSocD6wiBQrjQESkRLr9ttv54MPPshzrGLFiva/R0ZG5nktMjKSrVu3ArB7926aNm2Kp6en/fX27dtjtVrZu3cvFouFkydP0qlTp6vW0KRJE/vfPT098fHxITExEYCnn36avn37snnzZu666y569epFu3btbuqzikjxUgASkRLL09PzsltShcXd3f262jk7O+d5brFYsFqtAHTt2pWjR4+yaNEili5dSqdOnXj22Wd56623Cr1eESlcGgMkIqXW2rVrL3tev359AOrXr88ff/xBenq6/fXVq1fj4OBAvXr18Pb2JjQ0lJiYmALVUKlSJQYMGMDXX3/N5MmTmT59eoGuJyLFQz1AIlJiZWVlER8fn+eYk5OTfaDxnDlzaNWqFR06dOCbb75h/fr1fPLJJwA8+OCDjB49mgEDBjBmzBhOnz7NkCFDePjhhwkMDARgzJgxPPXUU1SuXJmuXbuSlpbG6tWrGTJkyHXVN2rUKFq2bEnDhg3Jyspi4cKF9gAmIiWbApCIlFhLliyhSpUqeY7Vq1ePPXv2ALYZWjNnzuSZZ56hSpUqfPvttzRo0AAADw8Pfv75Z4YNG0br1q3x8PCgb9++vP322/ZrDRgwgMzMTN555x3+/e9/ExAQwL333nvd9bm4uDBy5EiOHDmCu7s7t9xyCzNnziyETy4iRc1iGIZhdhEiIjfKYrEwb948evXqZXYpIlIKaQyQiIiIlDsKQCIiIlLuaAyQiJRKunsvIgWhHiAREREpdxSAREREpNxRABIREZFyRwFIREREyh0FIBERESl3FIBERESk3FEAEhERkXJHAUhERETKHQUgERERKXf+H7ZokyJnjmeEAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "# Assuming you store losses during training like this:\n",
    "train_losses = []\n",
    "test_losses = []\n",
    "\n",
    "for epoch in range(epochs):\n",
    "    total_train_loss = 0\n",
    "    total_test_loss = 0\n",
    "\n",
    "    model.train()\n",
    "    for batch in train_dataloader:\n",
    "        inputs, labels = batch\n",
    "        optimizer.zero_grad()\n",
    "        outputs = model(**inputs)\n",
    "        loss = loss_fn(outputs.logits, labels)\n",
    "        loss.backward()\n",
    "        optimizer.step()\n",
    "        total_train_loss += loss.item()\n",
    "    \n",
    "    model.eval()\n",
    "    with torch.no_grad():\n",
    "        for batch in test_dataloader:\n",
    "            inputs, labels = batch\n",
    "            outputs = model(**inputs)\n",
    "            loss = loss_fn(outputs.logits, labels)\n",
    "            total_test_loss += loss.item()\n",
    "\n",
    "    train_losses.append(total_train_loss / len(train_dataloader))\n",
    "    test_losses.append(total_test_loss / len(test_dataloader))\n",
    "\n",
    "# Plot the loss curves\n",
    "plt.plot(range(1, epochs+1), train_losses, label=\"Train Loss\")\n",
    "plt.plot(range(1, epochs+1), test_losses, label=\"Test Loss\")\n",
    "plt.xlabel(\"Epochs\")\n",
    "plt.ylabel(\"Loss\")\n",
    "plt.legend()\n",
    "plt.title(\"Training vs. Test Loss\")\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-14T06:20:24.796070Z",
     "iopub.status.busy": "2025-03-14T06:20:24.795687Z",
     "iopub.status.idle": "2025-03-14T06:20:24.907652Z",
     "shell.execute_reply": "2025-03-14T06:20:24.906513Z",
     "shell.execute_reply.started": "2025-03-14T06:20:24.796036Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "User: Tell me a joke\n",
      "Bot: Did you hear about the mathematician who’s afraid of negative numbers? He’ll stop at nothing to avoid them!\n",
      "\n",
      "User: Recommend a good book\n",
      "Bot: As an AI, I don't have personal preferences, but there are countless amazing books in various genres. Some popular ones include Harry Potter, To Kill a Mockingbird, and 1984.\n",
      "\n",
      "User: What's the weather like today?\n",
      "Bot: I'm sorry, I cannot provide real-time weather information.\n",
      "\n",
      "User: How can I save money?\n",
      "Bot: Investing in stocks, mutual funds, or real estate can help grow your wealth over time.\n",
      "\n",
      "User: How do I meditate?\n",
      "Bot: Meditation can reduce stress, improve focus, and promote emotional well-being.\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# Testing on New Data to test model generalization\n",
    "test_inputs = [\n",
    "    \"Tell me a joke\", \n",
    "    \"Recommend a good book\", \n",
    "    \"What's the weather like today?\", \n",
    "    \"How can I save money?\", \n",
    "    \"How do I meditate?\"\n",
    "]\n",
    "\n",
    "for input_text in test_inputs:\n",
    "    response = predict_intent(input_text)\n",
    "    print(f\"User: {input_text}\\nBot: {response}\\n\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-14T06:20:24.909244Z",
     "iopub.status.busy": "2025-03-14T06:20:24.908862Z",
     "iopub.status.idle": "2025-03-14T06:20:25.664937Z",
     "shell.execute_reply": "2025-03-14T06:20:25.664169Z",
     "shell.execute_reply.started": "2025-03-14T06:20:24.909206Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model saved to bert_chatbot_model.pth\n",
      "Tokenizer saved to bert_chatbot_tokenizer\n"
     ]
    }
   ],
   "source": [
    "# Define save paths\n",
    "model_path = \"bert_chatbot_model.pth\"\n",
    "tokenizer_path = \"bert_chatbot_tokenizer\"\n",
    "\n",
    "# Save model state dictionary\n",
    "torch.save(model.state_dict(), model_path)\n",
    "\n",
    "# Save tokenizer\n",
    "tokenizer.save_pretrained(tokenizer_path)\n",
    "\n",
    "print(f\"Model saved to {model_path}\")\n",
    "print(f\"Tokenizer saved to {tokenizer_path}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-14T06:20:25.666894Z",
     "iopub.status.busy": "2025-03-14T06:20:25.666633Z",
     "iopub.status.idle": "2025-03-14T06:20:26.840930Z",
     "shell.execute_reply": "2025-03-14T06:20:26.839944Z",
     "shell.execute_reply.started": "2025-03-14T06:20:25.666873Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "('chatbot_model/tokenizer_config.json',\n",
       " 'chatbot_model/special_tokens_map.json',\n",
       " 'chatbot_model/vocab.txt',\n",
       " 'chatbot_model/added_tokens.json')"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model.save_pretrained(\"chatbot_model\")\n",
    "tokenizer.save_pretrained(\"chatbot_model\")"
   ]
  }
 ],
 "metadata": {
  "kaggle": {
   "accelerator": "nvidiaTeslaT4",
   "dataSources": [
    {
     "datasetId": 6860959,
     "sourceId": 11018742,
     "sourceType": "datasetVersion"
    }
   ],
   "dockerImageVersionId": 30919,
   "isGpuEnabled": true,
   "isInternetEnabled": true,
   "language": "python",
   "sourceType": "notebook"
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.20"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}