Spaces:
Sleeping
Sleeping
File size: 65,320 Bytes
6bc5fb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-14T06:02:34.158602Z",
"iopub.status.busy": "2025-03-14T06:02:34.158188Z",
"iopub.status.idle": "2025-03-14T06:02:34.361502Z",
"shell.execute_reply": "2025-03-14T06:02:34.360367Z",
"shell.execute_reply.started": "2025-03-14T06:02:34.158571Z"
}
},
"outputs": [],
"source": [
"# Importing HuggingFace Token\n",
"from kaggle_secrets import UserSecretsClient\n",
"user_secrets = UserSecretsClient()\n",
"secret_value_0 = user_secrets.get_secret(\"HF_Token\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
"execution": {
"iopub.execute_input": "2025-03-14T06:02:34.363000Z",
"iopub.status.busy": "2025-03-14T06:02:34.362718Z",
"iopub.status.idle": "2025-03-14T06:12:26.502668Z",
"shell.execute_reply": "2025-03-14T06:12:26.501655Z",
"shell.execute_reply.started": "2025-03-14T06:02:34.362977Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using device: cuda\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7824a999787d4bd1b195d7d91c77b73d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"tokenizer_config.json: 0%| | 0.00/48.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d429c8c5a09d44acabf466ce018c6bcd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0a455715281a4842b2b84fb392994a9a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"tokenizer.json: 0%| | 0.00/466k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cb3a2c53b638478c9aebbcb91ba50d1a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"config.json: 0%| | 0.00/570 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e7ab9075f9a542439774f2c2fba440a1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model.safetensors: 0%| | 0.00/440M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/90 - Average Loss: 5.6662\n",
"Epoch 2/90 - Average Loss: 5.6118\n",
"Epoch 3/90 - Average Loss: 5.5608\n",
"Epoch 4/90 - Average Loss: 5.4642\n",
"Epoch 5/90 - Average Loss: 5.3513\n",
"Epoch 6/90 - Average Loss: 5.1811\n",
"Epoch 7/90 - Average Loss: 5.0176\n",
"Epoch 8/90 - Average Loss: 4.8236\n",
"Epoch 9/90 - Average Loss: 4.6535\n",
"Epoch 10/90 - Average Loss: 4.4724\n",
"Epoch 11/90 - Average Loss: 4.3279\n",
"Epoch 12/90 - Average Loss: 4.1504\n",
"Epoch 13/90 - Average Loss: 4.0176\n",
"Epoch 14/90 - Average Loss: 3.8612\n",
"Epoch 15/90 - Average Loss: 3.7189\n",
"Epoch 16/90 - Average Loss: 3.5748\n",
"Epoch 17/90 - Average Loss: 3.4296\n",
"Epoch 18/90 - Average Loss: 3.3193\n",
"Epoch 19/90 - Average Loss: 3.1704\n",
"Epoch 20/90 - Average Loss: 3.0567\n",
"Epoch 21/90 - Average Loss: 2.9273\n",
"Epoch 22/90 - Average Loss: 2.7933\n",
"Epoch 23/90 - Average Loss: 2.6832\n",
"Epoch 24/90 - Average Loss: 2.5414\n",
"Epoch 25/90 - Average Loss: 2.4337\n",
"Epoch 26/90 - Average Loss: 2.3230\n",
"Epoch 27/90 - Average Loss: 2.2094\n",
"Epoch 28/90 - Average Loss: 2.0913\n",
"Epoch 29/90 - Average Loss: 1.9798\n",
"Epoch 30/90 - Average Loss: 1.8935\n",
"Epoch 31/90 - Average Loss: 1.7755\n",
"Epoch 32/90 - Average Loss: 1.6802\n",
"Epoch 33/90 - Average Loss: 1.5814\n",
"Epoch 34/90 - Average Loss: 1.5013\n",
"Epoch 35/90 - Average Loss: 1.4134\n",
"Epoch 36/90 - Average Loss: 1.3328\n",
"Epoch 37/90 - Average Loss: 1.2458\n",
"Epoch 38/90 - Average Loss: 1.1845\n",
"Epoch 39/90 - Average Loss: 1.1036\n",
"Epoch 40/90 - Average Loss: 1.0327\n",
"Epoch 41/90 - Average Loss: 0.9679\n",
"Epoch 42/90 - Average Loss: 0.9215\n",
"Epoch 43/90 - Average Loss: 0.8682\n",
"Epoch 44/90 - Average Loss: 0.8089\n",
"Epoch 45/90 - Average Loss: 0.7654\n",
"Epoch 46/90 - Average Loss: 0.7181\n",
"Epoch 47/90 - Average Loss: 0.6696\n",
"Epoch 48/90 - Average Loss: 0.6318\n",
"Epoch 49/90 - Average Loss: 0.5918\n",
"Epoch 50/90 - Average Loss: 0.5542\n",
"Epoch 51/90 - Average Loss: 0.5274\n",
"Epoch 52/90 - Average Loss: 0.4944\n",
"Epoch 53/90 - Average Loss: 0.4631\n",
"Epoch 54/90 - Average Loss: 0.4428\n",
"Epoch 55/90 - Average Loss: 0.4125\n",
"Epoch 56/90 - Average Loss: 0.3950\n",
"Epoch 57/90 - Average Loss: 0.3698\n",
"Epoch 58/90 - Average Loss: 0.3491\n",
"Epoch 59/90 - Average Loss: 0.3309\n",
"Epoch 60/90 - Average Loss: 0.3142\n",
"Epoch 61/90 - Average Loss: 0.2992\n",
"Epoch 62/90 - Average Loss: 0.2829\n",
"Epoch 63/90 - Average Loss: 0.2706\n",
"Epoch 64/90 - Average Loss: 0.2552\n",
"Epoch 65/90 - Average Loss: 0.2451\n",
"Epoch 66/90 - Average Loss: 0.2355\n",
"Epoch 67/90 - Average Loss: 0.2219\n",
"Epoch 68/90 - Average Loss: 0.2122\n",
"Epoch 69/90 - Average Loss: 0.2063\n",
"Epoch 70/90 - Average Loss: 0.1950\n",
"Epoch 71/90 - Average Loss: 0.1860\n",
"Epoch 72/90 - Average Loss: 0.1758\n",
"Epoch 73/90 - Average Loss: 0.1675\n",
"Epoch 74/90 - Average Loss: 0.1630\n",
"Epoch 75/90 - Average Loss: 0.1607\n",
"Epoch 76/90 - Average Loss: 0.1525\n",
"Epoch 77/90 - Average Loss: 0.1441\n",
"Epoch 78/90 - Average Loss: 0.1364\n",
"Epoch 79/90 - Average Loss: 0.1326\n",
"Epoch 80/90 - Average Loss: 0.1293\n",
"Epoch 81/90 - Average Loss: 0.1269\n",
"Epoch 82/90 - Average Loss: 0.1199\n",
"Epoch 83/90 - Average Loss: 0.1129\n",
"Epoch 84/90 - Average Loss: 0.1095\n",
"Epoch 85/90 - Average Loss: 0.1076\n",
"Epoch 86/90 - Average Loss: 0.1030\n",
"Epoch 87/90 - Average Loss: 0.0984\n",
"Epoch 88/90 - Average Loss: 0.0944\n",
"Epoch 89/90 - Average Loss: 0.0919\n",
"Epoch 90/90 - Average Loss: 0.0880\n"
]
}
],
"source": [
"# Importing Libraries\n",
"import json\n",
"import torch\n",
"import os\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from torch.utils.data import Dataset, DataLoader\n",
"from transformers import BertTokenizer, BertForSequenceClassification\n",
"import torch.nn.functional as F\n",
"from sklearn.utils.class_weight import compute_class_weight\n",
"import numpy as np\n",
"import random\n",
"\n",
"# Load JSON data\n",
"with open(\"/kaggle/input/intents1/intents.json\", \"r\") as file:\n",
" intents = json.load(file)\n",
"\n",
"# Remove duplicate intent tags\n",
"unique_intents = []\n",
"seen_tags = set()\n",
"for intent in intents:\n",
" if intent[\"tag\"] not in seen_tags:\n",
" unique_intents.append(intent)\n",
" seen_tags.add(intent[\"tag\"])\n",
"\n",
"# Ensure unique intent tags\n",
"intent_tags = [intent[\"tag\"] for intent in unique_intents]\n",
"num_labels = len(intent_tags)\n",
"\n",
"# Create label mapping\n",
"label_map = {tag: i for i, tag in enumerate(intent_tags)}\n",
"\n",
"# Check for GPU availability\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"print(f\"Using device: {device}\")\n",
"\n",
"# Load BERT tokenizer & model\n",
"tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', token=secret_value_0)\n",
"model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=num_labels, token=secret_value_0)\n",
"model.to(device)\n",
"\n",
"# Define Dataset\n",
"class IntentDataset(Dataset):\n",
" def __init__(self, intents, tokenizer):\n",
" self.texts = []\n",
" self.labels = []\n",
" self.label_map = label_map\n",
"\n",
" for intent in intents:\n",
" for pattern in intent[\"patterns\"]:\n",
" self.texts.append(pattern)\n",
" self.labels.append(self.label_map[intent[\"tag\"]])\n",
"\n",
" def __len__(self):\n",
" return len(self.labels)\n",
"\n",
" def __getitem__(self, idx):\n",
" text = self.texts[idx]\n",
" label = torch.tensor(self.labels[idx], dtype=torch.long).to(device)\n",
"\n",
" encoding = tokenizer(text, truncation=True, padding=\"max_length\", max_length=32, return_tensors=\"pt\")\n",
" item = {key: val.squeeze(0).to(device) for key, val in encoding.items()} # Remove batch dim\n",
"\n",
" return item, label\n",
"\n",
"# Load dataset & dataloader\n",
"dataset = IntentDataset(unique_intents, tokenizer)\n",
"dataloader = DataLoader(dataset, batch_size=16, shuffle=True) # Increased batch size\n",
"\n",
"# Compute class weights\n",
"labels = [dataset.label_map[intent[\"tag\"]] for intent in unique_intents for _ in intent[\"patterns\"]]\n",
"class_weights = compute_class_weight(\"balanced\", classes=np.unique(labels), y=labels)\n",
"class_weights = torch.tensor(class_weights, dtype=torch.float).to(device)\n",
"\n",
"# Define optimizer & loss function\n",
"optimizer = torch.optim.AdamW(model.parameters(), lr=2e-5) # Lower learning rate\n",
"loss_fn = torch.nn.CrossEntropyLoss(weight=class_weights) # Use class-weighted loss\n",
"\n",
"# Training loop\n",
"epochs = 90 # Increased from 20 to 50 for better training\n",
"model.train()\n",
"\n",
"for epoch in range(epochs):\n",
" total_loss = 0\n",
" for batch in dataloader:\n",
" inputs, labels = batch\n",
" optimizer.zero_grad()\n",
" outputs = model(**inputs)\n",
" loss = loss_fn(outputs.logits, labels)\n",
" loss.backward()\n",
" optimizer.step()\n",
" total_loss += loss.item()\n",
" \n",
" avg_loss = total_loss / len(dataloader)\n",
" print(f\"Epoch {epoch+1}/{epochs} - Average Loss: {avg_loss:.4f}\")\n",
"\n",
"# Function to predict intent\n",
"def predict_intent(user_input):\n",
" model.eval()\n",
" inputs = tokenizer(user_input, return_tensors=\"pt\", truncation=True, padding=True, max_length=32)\n",
" inputs = {key: val.to(device) for key, val in inputs.items()} # Move input to GPU\n",
"\n",
" with torch.no_grad():\n",
" outputs = model(**inputs)\n",
"\n",
" predicted_label = torch.argmax(outputs.logits).item()\n",
" \n",
" # Map predicted label to intent\n",
" intent_tag = list(dataset.label_map.keys())[predicted_label]\n",
"\n",
" # Fetch a random response for the predicted intent\n",
" for intent in unique_intents:\n",
" if intent[\"tag\"] == intent_tag:\n",
" return random.choice(intent[\"responses\"])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-14T06:12:26.505510Z",
"iopub.status.busy": "2025-03-14T06:12:26.504747Z",
"iopub.status.idle": "2025-03-14T06:12:26.934471Z",
"shell.execute_reply": "2025-03-14T06:12:26.933341Z",
"shell.execute_reply.started": "2025-03-14T06:12:26.505474Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test Accuracy: 1.0000\n"
]
}
],
"source": [
"import torch\n",
"from torch.utils.data import random_split\n",
"from sklearn.metrics import accuracy_score\n",
"\n",
"# Split dataset into training (80%) and test (20%) sets\n",
"train_size = int(0.8 * len(dataset))\n",
"test_size = len(dataset) - train_size\n",
"train_dataset, test_dataset = random_split(dataset, [train_size, test_size])\n",
"\n",
"# Create test dataloader\n",
"test_dataloader = DataLoader(test_dataset, batch_size=16, shuffle=False)\n",
"\n",
"# Function to evaluate model accuracy\n",
"def evaluate_model(model, test_dataloader):\n",
" model.eval()\n",
" all_preds, all_labels = [], []\n",
" \n",
" with torch.no_grad():\n",
" for batch in test_dataloader:\n",
" inputs, labels = batch\n",
" outputs = model(**inputs)\n",
" preds = torch.argmax(outputs.logits, dim=1)\n",
"\n",
" all_preds.extend(preds.cpu().numpy())\n",
" all_labels.extend(labels.cpu().numpy())\n",
"\n",
" accuracy = accuracy_score(all_labels, all_preds)\n",
" return accuracy\n",
"\n",
"# Compute accuracy\n",
"test_accuracy = evaluate_model(model, test_dataloader)\n",
"print(f\"Test Accuracy: {test_accuracy:.4f}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-14T06:12:26.936897Z",
"iopub.status.busy": "2025-03-14T06:12:26.936431Z",
"iopub.status.idle": "2025-03-14T06:12:28.400809Z",
"shell.execute_reply": "2025-03-14T06:12:28.399868Z",
"shell.execute_reply.started": "2025-03-14T06:12:26.936850Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training Accuracy: 0.9939\n"
]
}
],
"source": [
"def evaluate_train_accuracy(model, train_dataloader):\n",
" model.eval()\n",
" all_preds, all_labels = [], []\n",
" \n",
" with torch.no_grad():\n",
" for batch in train_dataloader:\n",
" inputs, labels = batch\n",
" outputs = model(**inputs)\n",
" preds = torch.argmax(outputs.logits, dim=1)\n",
"\n",
" all_preds.extend(preds.cpu().numpy())\n",
" all_labels.extend(labels.cpu().numpy())\n",
"\n",
" accuracy = accuracy_score(all_labels, all_preds)\n",
" return accuracy\n",
"\n",
"# Compute Training Accuracy\n",
"train_dataloader = DataLoader(train_dataset, batch_size=16, shuffle=False)\n",
"train_accuracy = evaluate_train_accuracy(model, train_dataloader)\n",
"print(f\"Training Accuracy: {train_accuracy:.4f}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-14T06:12:28.401902Z",
"iopub.status.busy": "2025-03-14T06:12:28.401654Z",
"iopub.status.idle": "2025-03-14T06:20:24.794528Z",
"shell.execute_reply": "2025-03-14T06:20:24.793362Z",
"shell.execute_reply.started": "2025-03-14T06:12:28.401882Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8O0lEQVR4nO3dd3hUZd7G8e+k9wQSSAgEQgmE3gkBFJUoIEhVI6tS7IXisqsLFpqriIjyKihib0hTEBFQiIAIoYP0XkJLQoAUQhqZ8/4xMpol1JSTcn+ua16YM88585vMvuT2OU+xGIZhICIiIlKOOJhdgIiIiEhxUwASERGRckcBSERERModBSAREREpdxSAREREpNxRABIREZFyRwFIREREyh0FIBERESl3FIBERESk3FEAEinnBg4cSGho6E2dO2bMGCwWS+EWJCJSDBSAREooi8VyXY8VK1aYXWqZd+TIkev+Po4cOVLg9zt58iRjxoxh69at19X+888/x2KxsHHjxgK/t0h54WR2ASKSv6+++irP8y+//JKlS5dedrx+/foFep+PPvoIq9V6U+e+/PLLjBgxokDvXxpUqlTpsp/7pEmTOH78OO+8885lbQvq5MmTjB07ltDQUJo1a1bg64nI5RSAREqohx56KM/ztWvXsnTp0suO/68LFy7g4eFx3e/j7Ox8U/UBODk54eRU9v8Z8fT0vOznPnPmTM6dO3fN70NESibdAhMpxW677TYaNWrEpk2buPXWW/Hw8ODFF18E4IcffqBbt24EBwfj6upK7dq1efXVV8nNzc1zjf8dA3Tpds9bb73F9OnTqV27Nq6urrRu3ZoNGzbkOTe/MUAWi4XBgwczf/58GjVqhKurKw0bNmTJkiWX1b9ixQpatWqFm5sbtWvX5sMPP7yucUWDBw/Gy8uLCxcuXPZav379CAoKsn/OjRs30rlzZwICAnB3d6dmzZo88sgjV73+zcrKymL06NHUqVMHV1dXQkJCeOGFF8jKysrTbunSpXTo0AE/Pz+8vLyoV6+e/XtbsWIFrVu3BmDQoEH2W2uff/55gevbsmULXbt2xcfHBy8vLzp16sTatWvztMnJyWHs2LGEhYXh5uaGv78/HTp0YOnSpfY28fHxDBo0iGrVquHq6kqVKlXo2bNnodz+EykuZf8/3UTKuDNnztC1a1ceeOABHnroIQIDAwHbuBAvLy+GDx+Ol5cXv/76K6NGjSI1NZWJEyde87ozZswgLS2NJ598EovFwptvvkmfPn04dOjQNXuNfv/9d77//nueeeYZvL29effdd+nbty9xcXH4+/sDtl/GXbp0oUqVKowdO5bc3FzGjRt3XbeQoqOjmTp1Kj/99BP33Xef/fiFCxf48ccfGThwII6OjiQmJnLXXXdRqVIlRowYgZ+fH0eOHOH777+/5nvcKKvVSo8ePfj999954oknqF+/Ptu3b+edd95h3759zJ8/H4CdO3fSvXt3mjRpwrhx43B1deXAgQOsXr0asN3SHDduHKNGjeKJJ57glltuAaBdu3YFqm/nzp3ccsst+Pj48MILL+Ds7MyHH37IbbfdxsqVK4mIiABsoXb8+PE89thjtGnThtTUVDZu3MjmzZu58847Aejbty87d+5kyJAhhIaGkpiYyNKlS4mLi7vpAfUixc4QkVLh2WefNf73/2U7duxoAMa0adMua3/hwoXLjj355JOGh4eHkZmZaT82YMAAo0aNGvbnhw8fNgDD39/fOHv2rP34Dz/8YADGjz/+aD82evToy2oCDBcXF+PAgQP2Y3/88YcBGO+995792D333GN4eHgYJ06csB/bv3+/4eTkdNk1/5fVajWqVq1q9O3bN8/x2bNnG4Dx22+/GYZhGPPmzTMAY8OGDVe93s3o1q1bnp/bV199ZTg4OBirVq3K027atGkGYKxevdowDMN45513DMA4ffr0Fa+9YcMGAzA+++yz66rls88+u+bn7NWrl+Hi4mIcPHjQfuzkyZOGt7e3ceutt9qPNW3a1OjWrdsVr3Pu3DkDMCZOnHhdtYmUVLoFJlLKubq6MmjQoMuOu7u72/+elpZGUlISt9xyCxcuXGDPnj3XvG50dDQVKlSwP7/UE3Ho0KFrnhsVFUXt2rXtz5s0aYKPj4/93NzcXJYtW0avXr0IDg62t6tTpw5du3a95vUtFgv33XcfixYt4vz58/bjs2bNomrVqnTo0AEAPz8/ABYuXEhOTs41r1sQc+bMoX79+oSHh5OUlGR/3HHHHQAsX748T00//PDDTQ8+v1G5ubn88ssv9OrVi1q1atmPV6lShX/84x/8/vvvpKam2uvbuXMn+/fvz/da7u7uuLi4sGLFCs6dO1cs9YsUBQUgkVKuatWquLi4XHZ8586d9O7dG19fX3x8fKhUqZJ9wG5KSso1r1u9evU8zy+Foev5pfe/5146/9K5iYmJZGRkUKdOncva5XcsP9HR0WRkZLBgwQIAzp8/z6JFi7jvvvvsY4g6duxI3759GTt2LAEBAfTs2ZPPPvvssjE5hWH//v3s3LmTSpUq5XnUrVsXsH3mS3W3b9+exx57jMDAQB544AFmz55dpGHo9OnTXLhwgXr16l32Wv369bFarRw7dgyAcePGkZycTN26dWncuDHPP/8827Zts7d3dXVlwoQJLF68mMDAQG699VbefPNN4uPji6x+kaKgACRSyv29p+eS5ORkOnbsyB9//MG4ceP48ccfWbp0KRMmTAC4rl+2jo6O+R43DKNIz71ebdu2JTQ0lNmzZwPw448/kpGRQXR0tL2NxWJh7ty5xMbGMnjwYE6cOMEjjzxCy5Yt8/QcFQar1Urjxo1ZunRpvo9nnnkGsH1fv/32G8uWLePhhx9m27ZtREdHc+edd142QN0Mt956KwcPHuTTTz+lUaNGfPzxx7Ro0YKPP/7Y3ua5555j3759jB8/Hjc3N1555RXq16/Pli1bTKxc5MYoAImUQStWrODMmTN8/vnnDBs2jO7duxMVFZXnlpaZKleujJubGwcOHLjstfyOXcn999/PkiVLSE1NZdasWYSGhtK2bdvL2rVt25bXXnuNjRs38s0337Bz505mzpxZoM/wv2rXrs3Zs2fp1KkTUVFRlz3+3vvi4OBAp06dePvtt9m1axevvfYav/76q/02WWGvrl2pUiU8PDzYu3fvZa/t2bMHBwcHQkJC7McqVqzIoEGD+Pbbbzl27BhNmjRhzJgxl33ef/3rX/zyyy/s2LGD7OxsJk2aVKh1ixQlBSCRMuhSD8zfe1yys7N5//33zSopD0dHR6Kiopg/fz4nT560Hz9w4ACLFy++7utER0eTlZXFF198wZIlS7j//vvzvH7u3LnLep0uLSz499tgBw8e5ODBgzfxSf5y//33c+LECT766KPLXsvIyCA9PR2As2fPXvb6/9bk6ekJ2HryCoOjoyN33XUXP/zwQ56p6gkJCcyYMYMOHTrg4+MD2GYV/p2Xlxd16tSx13bhwgUyMzPztKlduzbe3t5FcmtRpKhoGrxIGdSuXTsqVKjAgAEDGDp0KBaLha+++qpQb0EV1JgxY/jll19o3749Tz/9NLm5uUyZMoVGjRpd9xYQLVq0oE6dOrz00ktkZWXluf0F8MUXX/D+++/Tu3dvateuTVpaGh999BE+Pj7cfffd9nadOnUCKNA6Ng8//DCzZ8/mqaeeYvny5bRv357c3Fz27NnD7Nmz+fnnn2nVqhXjxo3jt99+o1u3btSoUYPExETef/99qlWrZh+8Xbt2bfz8/Jg2bRre3t54enoSERFBzZo1r1rDp59+mu96S8OGDeO///2vff2hZ555BicnJz788EOysrJ488037W0bNGjAbbfdRsuWLalYsSIbN25k7ty5DB48GIB9+/bRqVMn7r//fho0aICTkxPz5s0jISGBBx544KZ/fiLFztQ5aCJy3a40Db5hw4b5tl+9erXRtm1bw93d3QgODjZeeOEF4+effzYAY/ny5fZ2V5oGn980Z8AYPXq0/fmVpsE/++yzl51bo0YNY8CAAXmOxcTEGM2bNzdcXFyM2rVrGx9//LHxr3/9y3Bzc7vCT+FyL730kgEYderUuey1zZs3G/369TOqV69uuLq6GpUrVza6d+9ubNy48bLa/v4zuB7/Ow3eMAwjOzvbmDBhgtGwYUPD1dXVqFChgtGyZUtj7NixRkpKiv0z9+zZ0wgODjZcXFyM4OBgo1+/fsa+ffvyXOuHH34wGjRoYF8W4GpT4i9Ng7/S49ixY/afR+fOnQ0vLy/Dw8PDuP322401a9bkudZ///tfo02bNoafn5/h7u5uhIeHG6+99pqRnZ1tGIZhJCUlGc8++6wRHh5ueHp6Gr6+vkZERIQxe/bsG/r5iZjNYhgl6D8JRaTc69Wr11WnYYuIFAaNARIR02RkZOR5vn//fhYtWsRtt91mTkEiUm6oB0hETFOlShUGDhxIrVq1OHr0KB988AFZWVls2bKFsLAws8sTkTJMg6BFxDRdunTh22+/JT4+HldXVyIjI3n99dcVfkSkyKkHSERERModjQESERGRckcBSERERModjQHKh9Vq5eTJk3h7exf6kvQiIiJSNAzDIC0tjeDgYBwcrt7HowCUj5MnT+bZF0dERERKj2PHjlGtWrWrtlEAyoe3tzdg+wFe2h9HRERESrbU1FRCQkLsv8evRgEoH5due/n4+CgAiYiIlDLXM3xFg6BFRESk3DE9AE2dOpXQ0FDc3NyIiIhg/fr1V20/Z84cwsPDcXNzo3HjxixatCjP6wkJCQwcOJDg4GA8PDzo0qWL9hQSERGRPEwNQLNmzWL48OGMHj2azZs307RpUzp37kxiYmK+7desWUO/fv149NFH2bJlC7169aJXr17s2LEDsI3+7tWrF4cOHeKHH35gy5Yt1KhRg6ioKNLT04vzo4mIiEgJZupK0BEREbRu3ZopU6YAtunnISEhDBkyhBEjRlzWPjo6mvT0dBYuXGg/1rZtW5o1a8a0adPYt28f9erVY8eOHTRs2NB+zaCgIF5//XUee+yx66orNTUVX19fUlJSNAZIRKQMyM3NJScnx+wypICcnZ1xdHS84us38vvbtEHQ2dnZbNq0iZEjR9qPOTg4EBUVRWxsbL7nxMbGMnz48DzHOnfuzPz58wHIysoCwM3NLc81XV1d+f33368YgLKysuzngu0HKCIipZ9hGMTHx5OcnGx2KVJI/Pz8CAoKKvA6faYFoKSkJHJzcwkMDMxzPDAwkD179uR7Tnx8fL7t4+PjAQgPD6d69eqMHDmSDz/8EE9PT9555x2OHz/OqVOnrljL+PHjGTt2bAE/kYiIlDSXwk/lypXx8PDQ4ralmGEYXLhwwT5MpkqVKgW6XpmaBu/s7Mz333/Po48+SsWKFXF0dCQqKoquXbtytTt9I0eOzNOzdGkdARERKb1yc3Pt4cff39/scqQQuLu7A5CYmEjlypWvejvsWkwLQAEBATg6OpKQkJDneEJCAkFBQfmeExQUdM32LVu2ZOvWraSkpJCdnU2lSpWIiIigVatWV6zF1dUVV1fXAnwaEREpaS6N+fHw8DC5EilMl77PnJycAgUg02aBubi40LJlS2JiYuzHrFYrMTExREZG5ntOZGRknvYAS5cuzbe9r68vlSpVYv/+/WzcuJGePXsW7gcQEZFSQbe9ypbC+j5NvQU2fPhwBgwYQKtWrWjTpg2TJ08mPT2dQYMGAdC/f3+qVq3K+PHjARg2bBgdO3Zk0qRJdOvWjZkzZ7Jx40amT59uv+acOXOoVKkS1atXZ/v27QwbNoxevXpx1113mfIZRUREpOQxNQBFR0dz+vRpRo0aRXx8PM2aNWPJkiX2gc5xcXF5dnNt164dM2bM4OWXX+bFF18kLCyM+fPn06hRI3ubU6dOMXz4cBISEqhSpQr9+/fnlVdeKfbPJiIiUlKEhoby3HPP8dxzz5ldSolh6jpAJZXWARIRKf0yMzM5fPgwNWvWzLM8Skl2rds7o0ePZsyYMTd83dOnT+Pp6Vmg8VC33XYbzZo1Y/LkyTd9jcJwte+1VKwDVF79uieBW8Mq4eRo+i4kIiJSwvx9yZZZs2YxatQo9u7daz/m5eVl/7thGOTm5uLkdO1f5ZUqVSrcQssA/RYuRm8v3ccjn29kzI87rzotX0REyqegoCD7w9fXF4vFYn++Z88evL29Wbx4MS1btrQv8nvw4EF69uxJYGAgXl5etG7dmmXLluW5bmhoaJ6eG4vFwscff0zv3r3x8PAgLCyMBQsWFKj27777joYNG+Lq6kpoaCiTJk3K8/r7779PWFgYbm5uBAYGcu+999pfmzt3Lo0bN8bd3R1/f/9i2cJKPUDFqGGwDxYLfL02jloBXjzSoabZJYmIlCuGYZCRk1vs7+vu7Fhos5dGjBjBW2+9Ra1atahQoQLHjh3j7rvv5rXXXsPV1ZUvv/ySe+65h71791K9evUrXmfs2LG8+eabTJw4kffee48HH3yQo0ePUrFixRuuadOmTdx///2MGTOG6Oho1qxZwzPPPIO/vz8DBw5k48aNDB06lK+++op27dpx9uxZVq1aBdh6vfr168ebb75J7969SUtLY9WqVUXeUaAAVIw6NwxiZNdwXl+0h//+tIsa/h50qh947RNFRKRQZOTk0mDUz8X+vrvGdcbDpXB+5Y4bN44777zT/rxixYo0bdrU/vzVV19l3rx5LFiwgMGDB1/xOgMHDqRfv34AvP7667z77rusX7+eLl263HBNb7/9Np06dbJPOqpbty67du1i4sSJDBw4kLi4ODw9PenevTve3t7UqFGD5s2bA7YAdPHiRfr06UONGjUAaNy48Q3XcKN0C6yYPX5LLfq1CcFqwJBvt7DrpPYdExGR6/e/C/ueP3+ef//739SvXx8/Pz+8vLzYvXs3cXFxV71OkyZN7H/39PTEx8fHvs3Ejdq9ezft27fPc6x9+/bs37+f3Nxc7rzzTmrUqEGtWrV4+OGH+eabb7hw4QIATZs2pVOnTjRu3Jj77ruPjz76iHPnzt1UHTdCPUDFzGKxMK5nI+LOXmD1gTM8+sUG5j/bnkCf0jFDQUSkNHN3dmTXuM6mvG9h8fT0zPP83//+N0uXLuWtt96iTp06uLu7c++995KdnX3V6zg7O+d5brFYsFqthVbn33l7e7N582ZWrFjBL7/8wqhRoxgzZgwbNmzAz8+PpUuXsmbNGn755Rfee+89XnrpJdatW0fNmkU3VEQ9QCZwdnTg/X+0pHYlT06lZPLYFxu5kH3R7LJERMo8i8WCh4tTsT+KcjXq1atXM3DgQHr37k3jxo0JCgriyJEjRfZ++alfvz6rV6++rK66devat6twcnIiKiqKN998k23btnHkyBF+/fVXwPa9tG/fnrFjx7JlyxZcXFyYN29ekdasHiCT+Ho48+nA1vR+fw3bT6Qw8ee9jL6nodlliYhIKRMWFsb333/PPffcg8Vi4ZVXXimynpzTp0+zdevWPMeqVKnCv/71L1q3bs2rr75KdHQ0sbGxTJkyhffffx+AhQsXcujQIW699VYqVKjAokWLsFqt1KtXj3Xr1hETE8Ndd91F5cqVWbduHadPn6Z+/fpF8hkuUQ+QiWr4e/JaL9sq1r/uubn7riIiUr69/fbbVKhQgXbt2nHPPffQuXNnWrRoUSTvNWPGDJo3b57n8dFHH9GiRQtmz57NzJkzadSoEaNGjWLcuHEMHDgQAD8/P77//nvuuOMO6tevz7Rp0/j2229p2LAhPj4+/Pbbb9x9993UrVuXl19+mUmTJtG1a9ci+QyXaCXofBTnStCpmTk0G/sLVgPWjuxEkK/GAomIFIbSuBK0XFthrQStHiCT+bg50yDY9iWtP3LW5GpERETKBwWgEqB1qG3RqfWHz5hciYiISPmgAFQCRNS0BaANh4t+3QMRERFRACoRLvUA7U1I41z61ddtEBERkYJTACoB/L1cqVPZtsPvBo0DEhERKXIKQCXEX+OAFIBERESKmgJQCWEfB6QeIBERkSKnAFRCtPkzAO04mcr5LG2LISIiUpQUgEqIYD93qlVwJ9dqsPmoZoOJiIgUJQWgEqSNxgGJiIgUCwWgEuTSbTCtCC0iUj5ZLJarPsaMGVOga8+fP7/Q2pV22g2+BLkUgLYeSyYzJxc3Z0eTKxIRkeJ06tQp+99nzZrFqFGj2Lt3r/2Yl5eXGWWVSeoBKkFqBngS4OVK9kUr246nmF2OiIgUs6CgIPvD19cXi8WS59jMmTOpX78+bm5uhIeH8/7779vPzc7OZvDgwVSpUgU3Nzdq1KjB+PHjAQgNDQWgd+/eWCwW+/MbZbVaGTduHNWqVcPV1ZVmzZqxZMmS66rBMAzGjBlD9erVcXV1JTg4mKFDh97cD6oQqAeoBLFYLLSpWYFF2+PZcOSsvUdIREQKiWFAzoXif19nD7BYCnSJb775hlGjRjFlyhSaN2/Oli1bePzxx/H09GTAgAG8++67LFiwgNmzZ1O9enWOHTvGsWPHANiwYQOVK1fms88+o0uXLjg63twdhv/7v/9j0qRJfPjhhzRv3pxPP/2UHj16sHPnTsLCwq5aw3fffcc777zDzJkzadiwIfHx8fzxxx8F+pkUhAJQCdMmtCKLtsez7vBZnr3d7GpERMqYnAvwenDxv++LJ8HFs0CXGD16NJMmTaJPnz4A1KxZk127dvHhhx8yYMAA4uLiCAsLo0OHDlgsFmrUqGE/t1KlSgD4+fkRFBR00zW89dZb/Oc//+GBBx4AYMKECSxfvpzJkyczderUq9YQFxdHUFAQUVFRODs7U716ddq0aXPTtRSUboGVMG1q+gOw6chZLuZaTa5GRERKgvT0dA4ePMijjz6Kl5eX/fHf//6XgwcPAjBw4EC2bt1KvXr1GDp0KL/88kuh1pCamsrJkydp3759nuPt27dn9+7d16zhvvvuIyMjg1q1avH4448zb948Ll40b9079QCVMPWCvPFxcyI18yK7TqXSpJqf2SWJiJQdzh623hgz3rcAzp8/D8BHH31EREREntcu3c5q0aIFhw8fZvHixSxbtoz777+fqKgo5s6dW6D3vhFXqyEkJIS9e/eybNkyli5dyjPPPMPEiRNZuXIlzs7OxVbjJQpAJYyjg4VWoRX5dU8i6w+fVQASESlMFkuBb0WZITAwkODgYA4dOsSDDz54xXY+Pj5ER0cTHR3NvffeS5cuXTh79iwVK1bE2dmZ3Nzcm67Bx8eH4OBgVq9eTceOHe3HV69enedW1tVqcHd355577uGee+7h2WefJTw8nO3bt9OiRYubrutmKQCVQG1q2gLQusNneeyWWmaXIyIiJcDYsWMZOnQovr6+dOnShaysLDZu3Mi5c+cYPnw4b7/9NlWqVKF58+Y4ODgwZ84cgoKC8PPzA2wzwWJiYmjfvj2urq5UqFDhiu91+PBhtm7dmudYWFgYzz//PKNHj6Z27do0a9aMzz77jK1bt/LNN98AXLWGzz//nNzcXCIiIvDw8ODrr7/G3d09zzih4qQAVAJd2hh1/eGzWK0GDg4FmzkgIiKl32OPPYaHhwcTJ07k+eefx9PTk8aNG/Pcc88B4O3tzZtvvsn+/ftxdHSkdevWLFq0CAcH23DfSZMmMXz4cD766COqVq3KkSNHrvhew4cPv+zYqlWrGDp0KCkpKfzrX/8iMTGRBg0asGDBAsLCwq5Zg5+fH2+88QbDhw8nNzeXxo0b8+OPP+Lv71/oP6vrYTEMwzDlnUuw1NRUfH19SUlJwcfHp9jf/2KulWbjlnI+6yILh3SgUVXfYq9BRKS0y8zM5PDhw9SsWRM3Nzezy5FCcrXv9UZ+f2sWWAnk5OhA61Bb1+TaQ2dMrkZERKTsUQAqoSJr27oE1xxUABIRESlsCkAlVGStAMA2DkjrAYmIiBQuBaASqkGwDz5uTpzPusiOk6lmlyMiIlKmKACVUI4OFvuq0LG6DSYictM016dsKazvUwGoBLs0DihWA6FFRG7YpdWFL1wwYfNTKTKXvs+Crh6tdYBKsHZ/BqCNR86Sk2vF2VF5VUTkejk6OuLn50diYiIAHh4eWAq4I7uYxzAMLly4QGJiIn5+fje9o/0lpgegqVOnMnHiROLj42natCnvvffeVXeHnTNnDq+88gpHjhwhLCyMCRMmcPfdd9tfP3/+PCNGjGD+/PmcOXOGmjVrMnToUJ566qni+DiFql6gNxU8nDl3IYdtx5NpWaOi2SWJiJQql3Y+vxSCpPQr6I72l5gagGbNmsXw4cOZNm0aERERTJ48mc6dO7N3714qV658Wfs1a9bQr18/xo8fT/fu3ZkxYwa9evVi8+bNNGrUCLCtXvnrr7/y9ddfExoayi+//MIzzzxDcHAwPXr0KO6PWCAODhba1vJn8Y54Yg+eUQASEblBFouFKlWqULlyZXJycswuRwrI2dm5wD0/l5i6EnRERAStW7dmypQpAFitVkJCQhgyZAgjRoy4rH10dDTp6eksXLjQfqxt27Y0a9aMadOmAdCoUSOio6N55ZVX7G1atmxJ165d+e9//3tddZm9EvTffRl7hFE/7KR9HX++eaytqbWIiIiUZKViJejs7Gw2bdpEVFTUX8U4OBAVFUVsbGy+58TGxuZpD9C5c+c87du1a8eCBQs4ceIEhmGwfPly9u3bx1133VU0H6SIRda6NA7oHFkXb34XXxEREfmLaQEoKSmJ3NxcAgMD8xwPDAwkPj4+33Pi4+Ov2f69996jQYMGVKtWDRcXF7p06cLUqVO59dZbr1hLVlYWqampeR4lRZ3KXgR4uZJ10cqWuGSzyxERESkTyty0ovfee4+1a9eyYMECNm3axKRJk3j22WdZtmzZFc8ZP348vr6+9kdISEgxVnx1FouFtrVsY3/yWw8oIzuX7ItaKVpERORGmBaAAgICcHR0JCEhIc/xhISEK47uDgoKumr7jIwMXnzxRd5++23uuecemjRpwuDBg4mOjuatt966Yi0jR44kJSXF/jh27FgBP13hym89IMMw+Cr2CE3H/kL/T9dpoS8REZEbYFoAcnFxoWXLlsTExNiPWa1WYmJiiIyMzPecyMjIPO0Bli5dam+fk5NDTk4ODg55P5ajoyNW65V7SVxdXfHx8cnzKEkujQPaGpdMZk4uF7IvMnz2H7zyw06yc62sPXSW5Xs1xVNEROR6mToNfvjw4QwYMIBWrVrRpk0bJk+eTHp6OoMGDQKgf//+VK1alfHjxwMwbNgwOnbsyKRJk+jWrRszZ85k48aNTJ8+HQAfHx86duzI888/j7u7OzVq1GDlypV8+eWXvP3226Z9zoKqGeBJoI8rCalZzN10nK/XHmVPfBqODhYaV/Vl67Fkpvx6gNvrVdYiXyIiItfB1AAUHR3N6dOnGTVqFPHx8TRr1owlS5bYBzrHxcXl6c1p164dM2bM4OWXX+bFF18kLCyM+fPn29cAApg5cyYjR47kwQcf5OzZs9SoUYPXXnutVC6EeInFYqFd7QDmbTnBy/N3ABDg5crUfzSnZiVPOkxYzua4ZGIPnaFd7QCTqxURESn5TF0HqKQqSesAXTJ7wzFe+G4bAK1DKzDlHy0I9HED4JX5O/hq7VGtFSQiIuVaqVgHSG5Ml8ZB3BIWwLO312bG423t4QfgyY61cHKwsPrAGbbEnTOxShERkdJBAaiU8HFz5qtHI3i+c/hlm6JWq+BBr+ZVAZi6/KAZ5YmIiJQqCkBlxNO31cZigWW7E9gTX3IWchQRESmJFIDKiNqVvLi7URVAvUAiIiLXogBUhjxze20Aftp2ksNJ6SZXIyIiUnIpAJUhDYN9ub1eJawGTFuhXiAREZErUQAqYwbfUQeA77ccJ+l8lsnViIiIlEwKQGVMyxoVaVLNl5xcgzkbj5tdjoiISImkAFQGPRRRA4AZ649itWqdSxERkf+lAFQG3dM0GB83J46dzeC3/afNLkdERKTEUQAqg9xdHOnbshoAX6+NM7kaERGRkkcBqIx68M/bYL/uSeBEcobJ1YiIiJQsCkBlVJ3KXrStVRGrATPXqxdIRETk7xSAyrCH2tp6gWZuOEZOrtXkakREREoOBaAy7K4GQQR4uXI6LYuluxLMLkdERKTEUAAqw1ycHHigdQgAX689anI1IiIiJYcCUBnXL6I6DhZYc/AMB0+fN7scERGREkEBqIyr6ufO7fUqAzBjnQZDi4iIgAJQuWAfDL0+jrWHzphcjYiIiPkUgMqBW+tWIrKWP+nZufT/ZD2Ltp8yuyQRERFTKQCVA44OFj4b1JrODQPJzrXy7IzNfL76sNlliYiImEYBqJxwc3bk/Qdb8nDbGhgGjPlxF28s3oNhaLNUEREpfxSAyhFHBwvjejbk33fVBWDayoM8P3ebQpCIiJQ7CkDljMViYfAdYbx5bxMcHSzM3XScBX+cNLssERGRYqUAVE7d3yqEYZ3CAHjtp92kZeaYXJGIiEjxUQAqx564tRY1AzxJTMvinaX7zS5HRESk2CgAlWNuzo6M7dEQgC9ij7DrZKrJFYmIiBQPBaBy7ta6lbi7cRC5VoNXftiB1aoB0SIiUvYpAAmvdG+Ah4sjm46eY+7m42aXIyIiUuQUgIQqvu48F2UbEP3G4j0kX8g2uSIREZGipQAkAAxqX5O6gV6cTc/mzZ/3ml2OiIhIkVIAEgCcHR14tWcjAL5dH8emo+dMrkhERKToKACJXUQtf+5tWQ3DgBHfbSPrYq7ZJYmIiBQJBSDJ4+Vu9QnwcmF/4nneX37Q7HJERESKhAKQ5OHn4cKYP9cGen/FAfYlpJlckYiISOFTAJLLdGtchaj6geTkGrwwdxu5WhtIRETKGAUguYzFYuG/vRrh7erE1mPJfLHmiNkliYiIFCoFIMlXkK8b/+kaDsDEn/dy7OwFkysSEREpPApAckX/aFOdNjUrkpGTy4vztmMYuhUmIiJlQ4kIQFOnTiU0NBQ3NzciIiJYv379VdvPmTOH8PBw3NzcaNy4MYsWLcrzusViyfcxceLEovwYZY6Dg4U3+jTGxcmBVfuTWHf4rNkliYiIFArTA9CsWbMYPnw4o0ePZvPmzTRt2pTOnTuTmJiYb/s1a9bQr18/Hn30UbZs2UKvXr3o1asXO3bssLc5depUnsenn36KxWKhb9++xfWxyoxalbzo0TQYgJ+2nTK5GhERkcJhMUy+rxEREUHr1q2ZMmUKAFarlZCQEIYMGcKIESMuax8dHU16ejoLFy60H2vbti3NmjVj2rRp+b5Hr169SEtLIyYm5rpqSk1NxdfXl5SUFHx8fG7iU5Uty/cmMuizDQR4ubLuxU44OljMLklEROQyN/L729QeoOzsbDZt2kRUVJT9mIODA1FRUcTGxuZ7TmxsbJ72AJ07d75i+4SEBH766SceffTRK9aRlZVFampqnof8pX3tAHzdnUk6n8V63QYTEZEywNQAlJSURG5uLoGBgXmOBwYGEh8fn+858fHxN9T+iy++wNvbmz59+lyxjvHjx+Pr62t/hISE3OAnKdtcnBzo3ND2M/9p+0mTqxERESk408cAFbVPP/2UBx98EDc3tyu2GTlyJCkpKfbHsWPHirHC0uHuxlUAWLIjXgsjiohIqedk5psHBATg6OhIQkJCnuMJCQkEBQXle05QUNB1t1+1ahV79+5l1qxZV63D1dUVV1fXG6y+fGlf59JtsGzWHT5Du9oBZpckIiJy00ztAXJxcaFly5Z5BidbrVZiYmKIjIzM95zIyMjLBjMvXbo03/affPIJLVu2pGnTpoVbeDnk7OhAl4a2kKnZYCIiUtqZfgts+PDhfPTRR3zxxRfs3r2bp59+mvT0dAYNGgRA//79GTlypL39sGHDWLJkCZMmTWLPnj2MGTOGjRs3Mnjw4DzXTU1NZc6cOTz22GPF+nnKsm5N/roNdjHXanI1IiIiN8/UW2Bgm9Z++vRpRo0aRXx8PM2aNWPJkiX2gc5xcXE4OPyV09q1a8eMGTN4+eWXefHFFwkLC2P+/Pk0atQoz3VnzpyJYRj069evWD9PWRZZ258KHs6cSc9m3eGztK+j22AiIlI6mb4OUEmkdYCubMR325i54Rj/iKjO670bm12OiIiIXalZB0hKH90GExGRskABSG5IZC3bbbCz6dmsPaRFEUVEpHRSAJIb4uToQJdGtl6gn7ZrNpiIiJROCkByw7rbb4OdIke3wUREpBRSAJIbFlGzIhU9XTh3IYfe769m9YEks0sSERG5IQpAcsOcHB0Y17MhXq5O7DiRyoMfr2PAp+vZfUqbyIqISOmgafD50DT463PmfBbv/XqAb9YdJSfXwGKBvi2q8WrPRri7OJpdnoiIlDOaBi/Fwt/LlTE9GrJseEe6N6mCYcDcTcd5Z9k+s0sTERG5KgUgKbAa/p5M+UcLpj3UAoBPfz/MvoQ0k6sSERG5MgUgKTRdGlXhrgaBXLQajPphB7q7KiIiJZUCkBSqV7o3wNXJgbWHzvKjdo0XEZESSgFIClVIRQ8G314HgP8u3MX5rIsmVyQiInI5BSApdI/fWotQfw8S07L4Pw2IFhGREkgBSAqdm7MjY3o0BODT1UfYG68B0SIiUrIoAEmRuK1eZe5qEEiuBkSLiEgJpAAkReaV7g1wc3Zg3eGzLPjjpNnliIiI2CkASZHJMyD6p92kZeaYXJGIiIiNApAUqUsDok+nZTF52X6zyxEREQEUgKSIuTo5MrZnIwA+X3OEPfHaMFVERMynACRFrmPdSnRtFESu1eCV+RoQLSIi5lMAkmLxcvcGuDs7suHIOeZtOWF2OSIiUs4pAEmxqOrnzpBOtgHRry/aTUqGBkSLiIh5FICk2DzWoRa1KnmSdD6bd5ZqhWgRETGPApAUGxcnB8b1sA2I/jL2CDtOpJhckYiIlFcKQFKsOoQF0K1JFawGPD93G9kXrWaXJCIi5ZACkBS7Mfc0pIKHM7tPpTLlV60NJCIixU8BSIpdJW9XXu1luxU2dcVBth/XrTARESleCkBiiu5NgunWpAq5VoN/zdlK1sVcs0sSEZFyRAFITPNqz0YEeLmwL+E87yzVrTARESk+CkBimoqeLrzeuzEA0387yOa4cyZXJCIi5YUCkJjqroZB9G5eFasB/57zB5k5uhUmIiJFTwFITDfmnoYE+rhy6HQ6U349YHY5IiJSDigAiel8PZwZ++cCiZ/8fpjEtEyTKxIRkbJOAUhKhM4NA2le3Y+MnFz1AomISJFTAJISwWKx8ELncABmrIsj7swFkysSEZGyTAFISozI2v7cWrcSF60Gby/da3Y5IiJShikASYnyQud6APzwx0l2n0q97PWTyRlM/HkP+xLSirs0EREpQxSApERpVNWXbk2qYBjw1s95e4FWH0ii+3u/M3X5QR77YqNWjxYRkZtmegCaOnUqoaGhuLm5ERERwfr166/afs6cOYSHh+Pm5kbjxo1ZtGjRZW12795Njx498PX1xdPTk9atWxMXF1dUH0EK2b/urIujg4WYPYlsOHIWq9Vg6vIDPPzJOs6mZwMQd/YCn/x+2ORKRUSktDI1AM2aNYvhw4czevRoNm/eTNOmTencuTOJiYn5tl+zZg39+vXj0UcfZcuWLfTq1YtevXqxY8cOe5uDBw/SoUMHwsPDWbFiBdu2beOVV17Bzc2tuD6WFFCtSl7c3yoEgPGLdvPk15uY+PNerAbc17Ia4/vYVo+e8usBElI1ZV5ERG6cxTAMw6w3j4iIoHXr1kyZMgUAq9VKSEgIQ4YMYcSIEZe1j46OJj09nYULF9qPtW3blmbNmjFt2jQAHnjgAZydnfnqq69uuq7U1FR8fX1JSUnBx8fnpq8jNy8+JZOOE5eTddEKgIujA2N7NuSB1iEYBvSdtoYtccn0bVGNSfc3NblaEREpCW7k97dpPUDZ2dls2rSJqKiov4pxcCAqKorY2Nh8z4mNjc3THqBz58729larlZ9++om6devSuXNnKleuTEREBPPnz79qLVlZWaSmpuZ5iLmCfN0Y1L4mAMG+bsx5KpJ+bapjsVhwcLAw+p6GAHy3+ThbtIeYiIjcINMCUFJSErm5uQQGBuY5HhgYSHx8fL7nxMfHX7V9YmIi58+f54033qBLly788ssv9O7dmz59+rBy5cor1jJ+/Hh8fX3tj5CQkAJ+OikMz3eux2eDWrN42K00DfHL81qzED/ubVkNgLE/7sJqNa0jU0RESiHTB0EXJqvVdrukZ8+e/POf/6RZs2aMGDGC7t2722+R5WfkyJGkpKTYH8eOHSuukuUqHB0s3F6vMr4ezvm+/kLneni6OLL1WDLztpwo5upERKQ0My0ABQQE4OjoSEJCQp7jCQkJBAUF5XtOUFDQVdsHBATg5OREgwYN8rSpX7/+VWeBubq64uPjk+chJV9lHzeGdAoDYMKSPZzPumhyRSIiUlqYFoBcXFxo2bIlMTEx9mNWq5WYmBgiIyPzPScyMjJPe4ClS5fa27u4uNC6dWv27s27fsy+ffuoUaNGIX8CKQkGtQ8l1N+DxLQsPlihPcREROT6mHoLbPjw4Xz00Ud88cUX7N69m6effpr09HQGDRoEQP/+/Rk5cqS9/bBhw1iyZAmTJk1iz549jBkzho0bNzJ48GB7m+eff55Zs2bx0UcfceDAAaZMmcKPP/7IM888U+yfT4qeq5MjI7rWB2x7iGX/OWtMRETkapzMfPPo6GhOnz7NqFGjiI+Pp1mzZixZssQ+0DkuLg4Hh78yWrt27ZgxYwYvv/wyL774ImFhYcyfP59GjRrZ2/Tu3Ztp06Yxfvx4hg4dSr169fjuu+/o0KFDsX8+KR53NgiksrcriWlZ/LonkS6N8r+FKiIicomp6wCVVFoHqPQZv2g3H/52iDsbBPJR/1ZmlyMiIiYoFesAiRSmvn9OiV++J5Ez57NMrkZEREo6BSApE+oGetO4qi8XrQYL/jhpdjkiIlLCKQBJmXFpYcTvNh83uRIRESnpFICkzOjRNBhnRws7TqSyJ17bmYiIyJUpAEmZUcHThTvCKwPw3Sb1AomIyJUpAEmZ0reF7TbYvC0nuZirNYFERCR/CkBSptxWrzIVPV1IOp/Fqv1JZpcjIiIllAKQlCkuTg70aBoMwFwNhhYRkStQAJIy59JssKW7Eki5kGNyNSIiUhIpAEmZ0zDYh/Agb7IvWlm4XWsCiYjI5W4qAB07dozjx/+6vbB+/Xqee+45pk+fXmiFidwsi8ViHwz96sJdjPphB0fPpJtclYiIlCQ3FYD+8Y9/sHz5cgDi4+O58847Wb9+PS+99BLjxo0r1AJFbkZ0mxBa1qhAZo6VL2OPcttbK3j6601sjjtndmkiIlIC3FQA2rFjB23atAFg9uzZNGrUiDVr1vDNN9/w+eefF2Z9IjfFx82ZuU9FMuPxCG6rVwnDgMU74unz/hpG/bDD7PJERMRkNxWAcnJycHV1BWDZsmX06NEDgPDwcE6dOlV41YkUgMVioV3tAD4f1Iafn7uV+/4cHP3V2qOcSskwuToRETHTTQWghg0bMm3aNFatWsXSpUvp0qULACdPnsTf379QCxQpDPWCvJl4X1Pa1KyIYcD8LRocLSJSnt1UAJowYQIffvght912G/369aNp06YALFiwwH5rTKQk6tO8KgDfbz6OYRgmVyMiImaxGDf5WyA3N5fU1FQqVKhgP3bkyBE8PDyoXLlyoRVohtTUVHx9fUlJScHHx8fscqQQpWbm0Oq/y2xT5Id0oFFVX7NLEhGRQnIjv79vqgcoIyODrKwse/g5evQokydPZu/evaU+/EjZ5uPmzF0NAgH4TitFi4iUWzcVgHr27MmXX34JQHJyMhEREUyaNIlevXrxwQcfFGqBIoXt0hpBC7aeJEcbpoqIlEs3FYA2b97MLbfcAsDcuXMJDAzk6NGjfPnll7z77ruFWqBIYbslLIAALxfOpGfz277TZpcjIiImuKkAdOHCBby9vQH45Zdf6NOnDw4ODrRt25ajR48WaoEihc3J0YEeTS8Nhj5hcjUiImKGmwpAderUYf78+Rw7doyff/6Zu+66C4DExEQNGpZSoU8LWwBaulsbpoqIlEc3FYBGjRrFv//9b0JDQ2nTpg2RkZGArTeoefPmhVpgmXMx2+wKBNuGqfUCbRum/rRdi3eKiJQ3NxWA7r33XuLi4ti4cSM///yz/XinTp145513Cq24MidhF7zbDHb9YHYl5Z7FYrH3As3bknc22PFzF/jvwl18tvqwGaWJiEgxcLrZE4OCgggKCrLvCl+tWjUtgngtq/8PUk/A7P7QsA/c/RZ4auVss/RsVpU3luxhw5FzHD2TjrOjA1OXH2D2xmPk5NqWx+pQJ4CwQG+TKxURkcJ2Uz1AVquVcePG4evrS40aNahRowZ+fn68+uqrWK2aVnxFPd6FW/4NFkfY+T28HwG7fzS7qnIryNeNDnUCAHjmm83cNnEF36yLIyfXwNvN9t8GM9bHmVmiiIgUkZsKQC+99BJTpkzhjTfeYMuWLWzZsoXXX3+d9957j1deeaWwayw7nFyh0yvw2DKoFA7pp2HWQ/DdY3DhrNnVlUuXboPtPJlKdq6ViJoVmfVEW97tZxvL9t2m42Tm5JpZooiIFIGb2gojODiYadOm2XeBv+SHH37gmWee4cSJ0j21uFi2wsjJhJVv2G6LGVbwqQp9pkNoh6J5P8lXRnYuj3+5EathMPj2OkTW9sdisZBrNbj1zeWcSM7g7fub0ufPxRNFRKTkKvKtMM6ePUt4ePhlx8PDwzl7Vj0Z18XZDaLGwKNLoWJt29igL+6BX1+D3ItmV1duuLs48vVjEcx4vC3t6gRgsVgAcHSw0K9NCAAz1uk2mIhIWXNTAahp06ZMmTLlsuNTpkyhSZMmBS6qXKnWCp78DZo9ZOsJ+u1N+PxuSNYvXbPd3yoERwcLG4+eY19CmtnliIhIIbqpW2ArV66kW7duVK9e3b4GUGxsLMeOHWPRokX2bTJKK9N2g98+Fxb+E7JSwdUXer4HDXoW3/vLZZ78aiM/70xgYLtQxvRoaHY5IiJyFUV+C6xjx47s27eP3r17k5ycTHJyMn369GHnzp189dVXN1W0AI3vhadWQbXWkJVimy7/y8u6JWaif0TUAGw7x2dkazC0iEhZcVM9QFfyxx9/0KJFC3JzS/cvCtN6gC7JzYGYsbDmPdvz0Fvg3k/Bq3Lx11LOWa0GHd9azrGzGUy8twn3tQoxuyQREbmCIu8BkiLm6Ax3/Rfu+wJcvODIKvjwVji23uzKyh0HBwsPtK4OaE0gEZGyRAGoJGvYCx5fDgH1IO0UfHY3/D7Z1kMkxea+VtVwcrCwJS6Z3adSzS5HREQKgQJQSVepLjweAw16gTUHlo2GD9rBwV/NrqzcqOztxp0NAgH4MvYIyReyuZB9kZxcK4V4B1lERIrRDY0B6tOnz1VfT05OZuXKlRoDVBQMA7Z8DcvGwIUk27Hw7tD5NagQamZl5cKq/ad5+JPLb0FaLFA/yIcPH25JSEUPEyoTEZFLimwMkK+v71UfNWrUoH///gUqXq7AYoEWD8OQTRDxtG0/sT0LYWoExIyDjGSzKyzT2tcO4JawgMuOGwbsOpXKA9PXcuzsBRMqExGRm1Gos8DKihLZA/S/EnfD4hfg8G+2525+0OE5aPMkuKgnoqgYhkGu1SA710rORYOk9Cwe/2Ijh5LSqernzswn2qonSETEJKVuFtjUqVMJDQ3Fzc2NiIgI1q+/+mynOXPmEB4ejpubG40bN2bRokV5Xh84cCAWiyXPo0uXLkX5EYpf5frQfwFEf2PbWDUz2XZ77N1msP4juJhtcoFlk8ViwcnRAQ8XJ3w9nKldyYtvn2hLrQBPTiRnqCdIRKSUMD0AzZo1i+HDhzN69Gg2b95M06ZN6dy5M4mJifm2X7NmDf369ePRRx9ly5Yt9OrVi169erFjx4487bp06cKpU6fsj2+//bY4Pk7xsligfnd4eg30/hD8asD5BFj0b5h+GyQfM7vCciHQx00hSESklDH9FlhERAStW7e27y1mtVoJCQlhyJAhjBgx4rL20dHRpKens3DhQvuxtm3b0qxZM6ZNmwbYeoCSk5OZP3/+TdVUKm6B5ediNmz+AlZOgPTT4F0F/jEbqmh/tuKQkJrJA9PXcvjP22E/DG5PgJer2WWJiJQbpeYWWHZ2Nps2bSIqKsp+zMHBgaioKGJjY/M9JzY2Nk97gM6dO1/WfsWKFVSuXJl69erx9NNPc+bMmSvWkZWVRWpqap5HqeTkAm0ehydWQKX6f60dpCnzxSLQx42ZT7Ql1N+DE8kZ/GfuNk2TFxEpoUwNQElJSeTm5hIYGJjneGBgIPHx8fmeEx8ff832Xbp04csvvyQmJoYJEyawcuVKunbtesXp+ePHj88zmy0kpJRvd+BbDR5ZYttCIzsNvrkPtnxjdlXlQqCPGx881BIXRwdi9iTy9TqtHi0iUhKZPgaoKDzwwAP06NGDxo0b06tXLxYuXMiGDRtYsWJFvu1HjhxJSkqK/XHsWBkYO+PuBw99B43vB+tF+OEZWPGGbd62FKn6VXz4T9dwAP67cBcHEtNMrkhERP6XqQEoICAAR0dHEhIS8hxPSEggKCgo33OCgoJuqD1ArVq1CAgI4MCBA/m+7urqio+PT55HmeDkahsc3WG47fmK8TBnAGSdN7eucmBQu1BuCQsg66KVod9uJeti6V4cVESkrDE1ALm4uNCyZUtiYmLsx6xWKzExMURGRuZ7TmRkZJ72AEuXLr1ie4Djx49z5swZqlSpUjiFlyYODhA1Gnq8Bw7OsOsH+OQuOHfE7MrKNAcHC5Pua0oFD2d2nUpl0i/7zC5JRET+xvRbYMOHD+ejjz7iiy++YPfu3Tz99NOkp6czaNAgAPr378/IkSPt7YcNG8aSJUuYNGkSe/bsYcyYMWzcuJHBgwcDcP78eZ5//nnWrl3LkSNHiImJoWfPntSpU4fOnTub8hlLhBb9YeBP4FkZEnfapskfWmF2VWVaZR83JvS1zcCb/tshft+fZHJFIiJyiekBKDo6mrfeeotRo0bRrFkztm7dypIlS+wDnePi4jh16pS9fbt27ZgxYwbTp0+nadOmzJ07l/nz59OoUSMAHB0d2bZtGz169KBu3bo8+uijtGzZklWrVuHqWs6nJFePgCdXQnALyDgHX/WBVZMgS2NUispdDYPo16Y6AP+as5Vz6VqgUkSkJDB9HaCSqNSuA3S9cjJh4T/hjxm25y7e0DQaWj0KgQ3Mra0MupB9ke7v/c6h0+l0bhjItIdaYrFYzC5LRKTMKTXrAIlJnN2g1/u2cUH+dWxT5Td8DB9EwqddYec8zRYrRB4uTvxfdHOcHS38vDOBWRvKwCxDEZFSTgGovLJYbOOCBm+E/j9A/R62Hebj1sCcgfBpZzi5xewqy4zG1Xz51131ABj74y4OntZMPBERMykAlXcWC9S6DaK/gn/ugFtfAGdPOLYOpt8OC4bA+dNmV1kmPHFLLdrV9icjJ5fnZm4l+6LV7JJERMotBSD5i08w3PESDNloW0ARAzZ/Ce+1hLXTwKpf2AXh4GDh7fub4evuzPYTKby9VFPjRUTMogAkl/MJhr4fwSM/Q5WmkJUCS/4D3z0CORlmV1eqBfm6MaFvYwA+/O0gaw5qaryIiBkUgOTKqreFx5dD14m2RRR3zoPPu0FawrXPlSvq0qgKD7QOwTBg+Kw/OJKUbnZJIiLljgKQXJ2DI0Q8Af3ng3sFOLEJProD4rebXVmpNuqeBtQK8CQ+NZO7Jv/GlF/3a0yQiEgxUgCS6xPaAR6LAf8wSD0On3aBvUvMrqrU8nBx4stH23BLWADZF6289cs+7n53FRuOnDW7NBGRckELIeajzC+EWBAZ52D2ADi8ErBA+6Fw+0u2jVflhhmGwYI/TjLux12c+XOV6AdahzC0UxjBfu4mVyciUrrcyO9vBaB8KABdQ24OLBlhWzwRILAx9JmuVaQLIPlCNm8s3sPMPxdJdHSw0LVREI92qEnz6hVMrk5EpHRQACogBaDrtHsh/DgULpwBR1fbrvMRT9t2oJebsv7wWd5Zuo/YQ2fsx1pU9+PRDrW4u3GQttAQEbkKBaACUgC6AWkJtsUS9/9se17zVuj1AfhWM7euUm7nyRQ+W32EBVtPkp1rGxw9qH0oo+9paHJlIiIllwJQASkA3SDDgE2fwc8vQc4FcPWFuydCk/ttK03LTUtMy+SLNUeYuvwgAK/2bMjDkaHmFiUiUkJpM1QpXhYLtHoEnlwFVVvZFk6c94RtT7ELmtVUEJW93Xi+czjPd7btIzbmx12s2JtoclUiIqWfApAUnoA6ttWjb38ZHJxg13x4PxL2LzO7slLvmdtq07dFNXKtBoNnbGFvfJrZJYmIlGoKQFK4HJ2g4/Pw2DIIqAvn4+GbvjD3EUg5bnZ1pZbFYmF8n8ZE1KzI+ayLPPL5Bk6nZZldlohIqaUAJEUjuDk8+ZttVhgW2PEdTGkNK9/UfmI3ycXJgWkPtaRmgCcnkjN4/MuNnDmvECQicjM0CDofGgRdyE79AYv/A3Gxtud+1eGu/0L9HhokfRMOnT5P7/fXkJKRg8UCjav6cktYALeGVaJ59Qo4Olg4k55FUlo2SeezSM3MoVWNigT5uplduohIkdIssAJSACoChmHrBVo6ClJP2I5Vj4SosVA9wtzaSqFNR8/y8vyd7D6Vmue4i5MDF3OtWP/n/6udHCzc3bgKj3SoSbMQv+IrVESkGCkAFZACUBHKToffJ8Oa9+Din7fCwrtDp9FQqa6ppZVGCamZrNqfxKr9p/l9f5J9Ow2LBfw9XQjwcsXBYmHX34JS8+p+PNK+Jl0bBeHkqLvgIlJ2KAAVkAJQMUg9Cctfh63fgGEFiyO0eBjuGAWe/mZXVypZrQbHzl3A3cWRih4uecLNjhO2hRV//OOvhRWjW4Uw4d4mZpUrIlLoFIAKSAGoGCXugZixsHeR7bl3MPT9GELbm1tXGXU6LYuv1h7l3Zj9OFhg5fO3E1LRw+yyREQKhRZClNKjcjj0+xYGLQb/MEg7CV90h5UTwZprdnVlTiVvV4bfWZdbwgKwGvD5miNmlyQiYgoFICkZarSDJ1ZA0362W2LL/wtf9bbtNSaF7rFbagEwa8MxUjNzTK5GRKT4KQBJyeHqBb2n2TZTdfaAwythWnvY/BXkZJpdXZlya1gAYZW9OJ91kdkbjpldjohIsVMAkpKn2T/giZVQuSGkn4YFg2FyI1jxBpw/bXZ1ZYLFYuGxW2oC8NnqI1z8c2C0iEh5oQAkJVOluvB4DNz5KvhUswWhFePhnYbww2BIOmB2haVez2ZV8fd04URyBot3xJtdjohIsVIAkpLL2R3aD4VhW+HeT6FqS8jNgi1fwdQ2sGCI9hcrADdnRx6OrAHAx6sOoQmhIlKeKABJyefoDI36wmMx8MgvULcLGLmw+Ut4twUseRHSk8yuslR6qG0NXJwc+ON4CpuOnsvzWkJqJm8v3ceKvYkmVSciUnQUgKT0sFhs22b8Y5YtCNXoYOsRWjsV/q+pbYVpTZ2/IQFervRpXhWAj1cdBiAjO5d3Y/Zz+1sreDdmP4NnbCEjWz9XESlbFICkdKoeAQMXwsPzbDvPZ5+HZaPh825w9rDZ1ZUqj3SwDYb+eVc8H686xB2TVvD20n1cyM7FYoHzWRf5eafGCIlI2aIAJKWXxQK174DHl0PPqeDibdtxfloH2+0xjWm5LnUDvelYtxKGAf/9aTenUjKp6ufOu/2aM6xTGABzN2mslYiULQpAUvpZLND8IXh6NVRvZ+sNWjAEvu0H5zV+5Xo81bE2DhbwdHHk+c71iPlXR3o0DaZvi2oArD6YxInkDJOrFBEpPApAUnZUqGG7LXbnOHB0gX2LYWoEbJ+r3qBriKztzy//7Mjv/7mDZ2+vg5uzIwAhFT2IrOWPYcD36gUSkTJEAUjKFgdHaD/MdlsssBFknIXvHoVZD2lbjWuoU9mLCp4ulx2/r5WtF2ju5uOaKi8iZYYCkJRNQY1sIei2keDgBHsW2tYO+mOmeoNuUJdGQXi6OHL0zAU2HDl37RNEREoBBSApu5xc4LYRtm01qjSFzGSY9yS81xJmPQy/vgY7voOEXZB70exqSywPFye6NakCwNxN2jdMRMoGi6E+7cukpqbi6+tLSkoKPj4+ZpcjhSE3B1b/H6ycALnZl79esTb0mQ7VWhV/baXA+sNnuf/DWDxdHNnwchQeLk5mlyQicpkb+f1dInqApk6dSmhoKG5ubkRERLB+/fqrtp8zZw7h4eG4ubnRuHFjFi1adMW2Tz31FBaLhcmTJxdy1VKqODrDrf+G4bvhoe+h8+vQ/GGo1gZcvODsQfjkLlj5pnqD8tE6tAI1/D1Iz85l8XatCSQipZ/pAWjWrFkMHz6c0aNHs3nzZpo2bUrnzp1JTMx/+vKaNWvo168fjz76KFu2bKFXr1706tWLHTt2XNZ23rx5rF27luDg4KL+GFJaeAZAnU4Q+Sz0nAKPLYV/7rBttWHkwvLX4PO74dwRsystUSwWC/f+OSX+f9cESvxzy4wZ6+LMKE1E5KaYfgssIiKC1q1bM2XKFACsVishISEMGTKEESNGXNY+Ojqa9PR0Fi5caD/Wtm1bmjVrxrRp0+zHTpw4QUREBD///DPdunXjueee47nnnruumnQLrBwyDNg2Gxb9G7JSbYsqdhkPzR4EB9P/O6FEOJGcQYcJv2IYsOqF23FytDBtxUG+3XCM7ItWAGY/GUmbmhVNrlREyqtScwssOzubTZs2ERUVZT/m4OBAVFQUsbGx+Z4TGxubpz1A586d87S3Wq08/PDDPP/88zRs2PCadWRlZZGamprnIeWMxQJNo+Gp36F6JGSnwYLB8PEdcHSN2dWVCFX93GlX2x+AJ7/aRMc3V/BF7FGyL1qp+Of0+XELd2K1alihiJR8pgagpKQkcnNzCQwMzHM8MDCQ+Pj8xxnEx8dfs/2ECRNwcnJi6NCh11XH+PHj8fX1tT9CQkJu8JNImVGhBgz8Ce581dYLdHILfNbVNmvs7CGzqzPdvS1tt8F2nUolO9dKRM2KzHgsgl/+eSverk7sOJGqbTNEpFQoc337mzZt4v/+7//4/PPPsVgs13XOyJEjSUlJsT+OHdNU33LNwRHaD4Whm6HlILA4wO4FMKUNLHoe4i8fb1ZedG1UhTvCK3NbvUrMfKIts56MpF2dAAK8XBn6575hb/68l7TMHJMrFRG5OlMDUEBAAI6OjiQk5F2hNyEhgaCgoHzPCQoKumr7VatWkZiYSPXq1XFycsLJyYmjR4/yr3/9i9DQ0Hyv6erqio+PT56HCF6V4Z7J8NRq26ar1hxYPx2mtbdtuBr7Ppw/bXaVxcrN2ZFPB7bm80FtaFvLP89rA9qFUjPAk6TzWUxdftCkCkVEro+pAcjFxYWWLVsSExNjP2a1WomJiSEyMjLfcyIjI/O0B1i6dKm9/cMPP8y2bdvYunWr/REcHMzzzz/Pzz//XHQfRsquwAbw8Dzbo34P2z5j8dvh55HwdjjM7g/J6jV0cXLgpbvrA/Dp74c5eibd5IpERK7M9NXMhg8fzoABA2jVqhVt2rRh8uTJpKenM2jQIAD69+9P1apVGT9+PADDhg2jY8eOTJo0iW7dujFz5kw2btzI9OnTAfD398ffP+9/mTo7OxMUFES9evWK98NJ2VL7DtvjwlnbCtJ/fAsnNsGuH+DAr3DXq9ByoG1AdTnVqX5lbgkLYNX+JF5ftJsPH9bCkiJSMpk+Big6Opq33nqLUaNG0axZM7Zu3cqSJUvsA53j4uI4deqUvX27du2YMWMG06dPp2nTpsydO5f58+fTqFEjsz6ClDceFaHN4/D4r7bbY9Xa2GaNLXwOvuwJ546aXaFpLBYLr3RvgKODhZ93JrDmYBI5uVZOJGew6eg5Fm0/xdZjyWaXKSJi/jpAJZHWAZIbYs2FddMg5lW4mAHOntBpFLQcAM7uZldnilE/7ODL2KO4ODqQY7Vetv/s07fV5vm76uHgUH57y0Sk8JWadYBEygQHR9vK0k+vhhrtIScdlvwH3m4Ay8aUy/FB/4yqS4CXC9m5tvDj5GChqp87jav6AvDBioM8+fUm0rO07YiImEM9QPlQD5DcNKsVNn0Gv78DKX8GH4sDhHe3jQ+q2hLc/cyssNgknc8iPiWTQB83/D1d7L0987ec4IXvtpF90Ur9Kj58PKAVVf3KZ0+ZiBSuG/n9rQCUDwUgKTBrLuxdbLs1dmRV3td8qkJgQ6jcAELaQN2u5W67jc1x53jiy00knc8iwMuFDx9uRcsaFcwuS0RKOQWgAlIAkkKVsMu2ftCBGEjJZ8PQ5g/BPe/abqWVIyeSM3jsi43sPpWKi6MDr/ZqSHTr6maXJSKlmAJQASkASZHJTIHE3ZCwE079AVu+AsMKTR6AnlPB0fSVKYpVetZFhs/eys87bYubPhhRndH3NMTFqXz1iIlI4VAAKiAFICk2O76H7x4DIxca9YXeH4Kjs9lVFSur1WDq8gO8vWwfhgEta1Tg/QdbEOjjZnZpIlLKaBaYSGnRqA/c/wU4ONsWV5z7CFzMNruqYuXgYGFIpzA+HdAabzcnNh09R/f3fuf3/UmcTssiLTOHnFyr2WWKSBmjHqB8qAdIit3exbYtNXKzbYOi75kM3vnvh1eWHUlK58mvNrE3Ie2y1xwdLPh7utC7eVUealuDkIoeJlQoIiWZboEVkAKQmGL/Mpj5D8jNsk2dr3WbbWxQ/e7g4ml2dcUmPesio37YyU/bT5KZk3/Pj8UCt9WtRP/IUDrWraQFFUUEUAAqMAUgMc3RNbbFE4+t++uYsyc06AERT0Jwc9NKM4NhGGRdtJKZk0tmjpXtJ1L4au1Rftt32t6mekUP/nVXXXo0DcZSjvdhExEFoAJTABLTnT0E22bDHzPh3OG/jtfsCB3+aesdKse/7A8npfP12qPM2XiM1EzbatIta1RgVPcGNA3xM7c4ETGNAlABKQBJiWEYcHwDbPgYts+1zRYDqNIU2g2F6m3Bu0q5W0PokozsXD75/RDvrzjIhWzbz6Zvi2q80KWeZpGJlEMKQAWkACQlUnIcxE6FzV9CzoW/jjs4gW818A2BCqG2hRWrtzWtTDMkpGYyYckevt98AgAPF0c+6t+K9nUCTK5MRIqTAlABKQBJiZZ+BjZ8BNtm2UKRNZ8NRev3gDvHQsVaxV+fibYeS2bMgp1sPZZMgJcLi4bdQmVv9QSJlBcKQAWkACSlhjUX0uJtQSg5Do78Bltn2FaXdnCGNo/Drc+DR0WzKy02mTm59Jq6mj3xaXSoE8CXj7TRLDGRckIBqIAUgKRUS9gFS1+BA8tsz918IeIp2270PsGmllZcDiSmcc97q8nIyeU/XcJ5+rbaZpckIsVAK0GLlGeBDeCh7+Ch76FyQ9v+YysnwDuNbIstHv7NNri6DKtT2ZsxPRoAMOmXvWyJO2dyRSJS0igAiZRVdTrBU6vg3k+hejvbDLJdP8AX98DUCNjyje0WWhl1f6sQujepwkWrwZBvt5CSkWN2SSJSgigAiZRlDo62TVYfWQxPrYZWj9gWVkzaCz88Ax/eartVVgZ7hCwWC6/3aUxIRXeOn8vgxXnb0R1/EblEY4DyoTFAUqZlpsLGT+H3t223x8C2sOKd42zrC5UxW+LOcd+0WC5aDTo3DGRgu5q0rVVRq0aLlEEaBF1ACkBSLlw4C6smwfrptk1YAcLusvUY1bsb3MrO//Y//f0w4xbusj+vG+hF/8hQejeviqerk4mViUhhUgAqIAUgKVfOHYGYV2HH3L+OObpC2J3QqI9td3qX0r/z+p74VL6MPcq8zSfIyLGNffJ2dWJcr4b0bl7tiuclX8jm09VHuL1eJZpXr1Bc5YrITVAAKiAFICmXTu+DHd/ZHmf2/3XcvYJt7FCbJ8A7yLz6CklKRg5zNx3n67VHOZyUjsUCE/o24f5WIZe1TUzL5OGP17M3IQ13Z0dmPdmWJtX8ir9oEbkuCkAFpAAk5ZphQMIO2PG9rVcoOc523NEFGt8Hkc9CYENzaywEVqvB6AU7+WrtUVsI6tOE+1v/FYJOJGfw0MfrOJyUbj8W4OXC90+3p7p/6e8REymLtA6QiNw8iwWCGkPUaBi6Fe7/CkIibOOEtn4DH7SDz7vbdqvPyTC72pvm4GBhXM+GDIisgWHAC99tY9YGW9g7dPo8932whsNJ6VT1c+enoR1oUMWHpPPZDPhsPWfTs02uXkQKSj1A+VAPkEg+jm2A2Pdg94+2rTYAXH2hcV/bBqzBLWzhqZQxDIOxP+7i8zVHABhyRx2+XR9H0vlsalXy5JvHIqji605iaia931/DieQMmlf3Y8ZjbXF3cTS3eBHJQ7fACkgBSOQqkuNs+41t+QZS4v467h8G9e+xPYKbl6owZBgG4xbu4rPVR+zHGlTx4ctH2xDg5Wo/diAxjb4fxJKSkcOdDQJ5vXdjdp1KZceJFLYdT2ZPfBod61ZibI+GmmYvYgIFoAJSABK5DlYrHFkFW76G3QvgYuZfr/lUg/rdoUk0VG1hXo03wDAMXvtpNx//fpgW1f34bFAbfN2dL2u38chZ/vHxOrIvWq94rQl9GxPdunpRlisi+VAAKiAFIJEblJkC+5fagtD+ZZBzaeCwBe54CTr8CxxKx5DDw0nphFRwx8nxyvUu3n6Kwd9uIddqUCvAk0ZVfWlSzZf4lEw+/v0w7s6O/DikA3UqexVj5SKiAFRACkAiBZCTAYdW2G6T7V5gO1a3C/SeZptSX0Ykpmbi5uKIj9tfvURWq8HDn65j9YEzNAz24ftn2uHqpHFCIsVFs8BExDzO7lCvK0R/BT2ngpMb7FsCH3aEU3+YXV2hqezjlif8gG1m2dv3N6OChzM7T6Yycclek6oTkWtRABKRotP8IXj0F/CrAclH4ZO7YPX/weHf4OxhuFj2ppMH+rgx8V7bnmof/36YFXsTTa5IRPKjW2D50C0wkUKWcQ6+fxL2//w/L1jAuwoEhNl6jcK7gV/ZGDw86ocdfBl7lAAvFxYPu5VK3q7XPklECkRjgApIAUikCFitto1X9/9sm0qfcjzvzLFLgpr8OZ2+B1QOL/46C0lmTi49p6xmb0IadQO9uK9lCHc1DKSGv2eedtkXrWw/kcz6w+fw93ShT4uqVx2ALSJXpgBUQApAIsXAMCD9NCQfg2NrYc9PEBf71yKLAA16wh2jIKCOeXUWwN74NPp+sIbzWRftx8KDvLmrQSAuTg6sPXSWTUfP2TdnBWhU1Yc3+zalQbD+7RG5UQpABaQAJGKS9CTYu9i22vT+XwADLI7QcgB0/E+p3Iw1MTWTxTvi+WVXPGsPnSXXevk/uRU9XWhZowLrD58lJSMHJwcLT99Wm8F31NEsMpEboABUQApAIiVAwk5YNvavcUPOHtBiAHj6gwF//h9w9YamD5SKKfbJF7L5dU8iMXsSwYCIWhVpW8ufOpW8cHCwkJiWyaj5O1myMx6AsMpevNG3CS1rlPzPJlISKAAVkAKQSAly5HdYOhpObLxyGw9/iBoLzR4sNQsuXs2i7acY9cMOks7bZsl1aRjEP++sS70gb5MrEynZSt06QFOnTiU0NBQ3NzciIiJYv379VdvPmTOH8PBw3NzcaNy4MYsWLcrz+pgxYwgPD8fT05MKFSoQFRXFunXrivIjiEhRCe0Ajy2D6K+h5UBo0d/WE9RigO15QD24cAYWDIZP74KTW00uuODublyFpf/syH0tq2GxwJKd8XT5v98Y+u0WDp0+b3Z5ImWC6T1As2bNon///kybNo2IiAgmT57MnDlz2Lt3L5UrV76s/Zo1a7j11lsZP3483bt3Z8aMGUyYMIHNmzfTqFEjAGbMmEHlypWpVasWGRkZvPPOO8yZM4cDBw5QqVKla9akHiCRUiQ3B9ZNgxVvQPZ5wGILRo36QnAz2y2yUmxfQhqTl+1j0XbbbTEHC9zbshovd29w2UKMIuVdqboFFhERQevWrZkyZQoAVquVkJAQhgwZwogRIy5rHx0dTXp6OgsXLrQfa9u2Lc2aNWPatGn5vselH8iyZcvo1KnTNWtSABIphVJPwS8vw465fx2zOEClcNuGrNVaQ/g9tjFEpdDOkym8s3Qfy3bbFlasGeDJBw+1IDxI/0aJXFJqboFlZ2ezadMmoqKi7MccHByIiooiNjY233NiY2PztAfo3LnzFdtnZ2czffp0fH19adq0aeEVLyIli08VuPcTGPgTNOhl25HesELiLtuO9T8Og7frw7yn4cQms6u9YQ2Dffl4QGvmPBVJsK8bh5PS6TV1NfO2HDe7NJFSycnMN09KSiI3N5fAwMA8xwMDA9mzZ0++58THx+fbPj4+Ps+xhQsX8sADD3DhwgWqVKnC0qVLCQgIyPeaWVlZZGVl2Z+npqbezMcRkZIgtIPtAZAWbws7JzbZdquP3wZ/zLA9gltAm8dtaw25eF79miVI69CKLBx6C8NmbmHV/iT+OesPNh09xyvdG2jKvMgNKBGDoIvC7bffztatW1mzZg1dunTh/vvvJzEx/z15xo8fj6+vr/0REhJSzNWKSJHwDrJtr9FpFDz5Gzy6DJpEg6MLnNwM85+GN2vDrIdhx3eQVToGGFf0dOHzQW0Y2ikMgK/XxnH/tFj2J6SZXJlI6WFqAAoICMDR0ZGEhIQ8xxMSEggKyn/Bs6CgoOtq7+npSZ06dWjbti2ffPIJTk5OfPLJJ/lec+TIkaSkpNgfx44dK8CnEpESyWKBkNbQZzr8cxfc8Yptk9aLGbB7Acx9BCbWhpkPwvqP4NQ2yL147euaxNHBwvA76/LZwNb4ujvzx/EU7n53FZN+2Uvm31aWFpH8mRqAXFxcaNmyJTExMfZjVquVmJgYIiMj8z0nMjIyT3uApUuXXrH936/799tcf+fq6oqPj0+eh4iUYV6V4NZ/w7A/4ImV0GE4VKxl25tsz0JY9G/48BaYUAO+6AG/vgan95lddb5uD6/M4mG30Cm8Mjm5Bu/9eoCu/7eKNQeTAMjJtRJ78AzjF+3mzrdX0mj0z/bXRMoz02eBzZo1iwEDBvDhhx/Spk0bJk+ezOzZs9mzZw+BgYH079+fqlWrMn78eMA2Db5jx4688cYbdOvWjZkzZ/L666/bp8Gnp6fz2muv0aNHD6pUqUJSUhJTp05lxowZbNq0iYYNG16zJs0CEymHDAMSdsCeRba9yY5vhKy/jQe0OEKrQXDbSPDMfzyhmQzDYMmOeEYv2Elimu0/9lqHVmDPqTTSsvL2ZIVUdOeX5zri7qIxQ1K23Mjvb1MHQYNtWvvp06cZNWoU8fHxNGvWjCVLltgHOsfFxeHwt5Vd27Vrx4wZM3j55Zd58cUXCQsLY/78+fY1gBwdHdmzZw9ffPEFSUlJ+Pv707p1a1atWnVd4UdEyimLBYIa2x4A1lw4vQeOrYe9i2x7k234GP6YBbf+CyKeBmc3c2v+G4vFQtfGVWgfFsDEJXv5et1RNhw5B4C/pwsd61WiY91KvLF4D8fOZjA5Zh8ju9Y3uWoR85jeA1QSqQdIRC5zeBX88hKc+sP23DcEGvWx/ekbAn4h4FsN3HzNrfNP244ns+noOVpUr0Djqr44OFgAWLYrgce+3Iijg4UFg9vTMPjm6jUMg9iDZ1i4/RT3taxG8+rar0zMV6oWQiyJFIBEJF9WK2yfAzFjIfVE/m0q1IR6XaFuF6jRDhxL3mrNz3yziUXb42lSzZd5z7TH8c9wdD0u5lpZvCOeD387yI4TtluEvu7OLBzSgZCKHkVVssh1UQAqIAUgEbmqnAz441s4vRdSjkNynO3PjLN527n6Qp1O0Pwh258lRGJqJp3eXkla5kVGdW/AIx1qXvOcnFwrM9fH8dGqw8SdvQCAm7MDAV6uHD+XQf0qPnz/dDuNKxJTKQAVkAKQiNyUzBQ4tBL2LYF9P8OFv822anw/dHmjxGzF8c26o7w0bwceLo4sHd6Rqn7uV2ybmZPL019vYvne0wBU8HBmQLtQ+keGkpmTyz3v/c6Z9Gx6NQvmnehmWCzX36MkUpgUgApIAUhECsxqta1AvX22bfC0YQWPAOj2FjTsbXZ1WK0G0dNj2XDkHHeEV+aTAa3yDS7nsy7y2BcbWHvoLG7ODozoEk506+p5enrWHjrDgx+vI9dqMPqeBgxqf+0eJZGioABUQApAIlKoTmyC+c/C6d225/XvgdaP27bqSImD5GO2W2jZ6bYxQ47O4PDnnxVCIfJZ8Aku9LIOJKbR9f9WkZNr0Kd5VYZ2CiM04K9tQVIu5DDgs/VsPZaMl6sTnw5sTZuaFfO91ie/H+bVhbtwdLAw47EIImqVjJ4uKV8UgApIAUhECt3FLFg1yfaw3uAK005u0OYJ6PBP8Mg/gNysD1ceZPxi296Ljg4WejYLZsgdYXi7OfHwJ+vZfSoVPw9nvhjUhqYhfle8jmEYPDdrKz9sPUmAlws/DulAFd8r31YTKQoKQAWkACQiRebUNvj5RVuPj1/IX9PoL02ht+ZA7qVHFmybY1uYEcDVB9oNhbZPg6tXoZW0Je4c/xeznxV/jvFxsEBFT1eSzmcR4OXK14+1ITzo2v8WXsi+SJ/317AnPo0GVXz49om2+LqXvFlwUnYpABWQApCIlBiGYVuEMeZVSNhuO+bgbNvo1Svwrz8r1oR6d4N/7Zt+q63Hknk3Zj+/7rFtHB3s68Y3j7el5t9ui11L3JkL9PlgNUnns2lVowJfPtoGDxfT19yVckIBqIAUgESkxLFaYef3sPw1OHvoyu2qNIWGfaBhL9v4oWvJOg9J+yC4uW01bGD78RR+3ZPIfa2qEXyV2WFXsutkKtHTY0nLvMgtYQF8PKAVrk6aHi9FTwGogBSARKTEsloh9TikJcD5eNtA6vOJcHwDHP4NjL/tBB/cHOp1g7qdbVt8XJrlZRhwYjNs/gJ2fAfZ56HpP6DnFHAonKCy6ehZHvp4PRk5uXRtFMR7/Zrj5Gjq/ttSDigAFZACkIiUSulJsPtHW0/Rkd9tU+8v8Q62BaEKobBtNiTuvPz8Zg9Bj/fAoXCCyqr9p3n0841k51q5r2U1JvRtYt+SQ6QoKAAVkAKQiJR65xNh72LbgoyHlkPOhbyvO7lBg17Qor+tJ+m7x229R4UcgpbsOMUz32zGakAVXzdcnBxwsFiwWMDRYqFX86o8c1ttLZ4ohUIBqIAUgESkTMnJhCOrbCtUnz1s26us8b3g/rcNTHd8B989Zus1av4Q3FN4IWjupuO8MPcPrFf4bfPS3fV5/NZahfJeUr4pABWQApCIlEvb58L3j9tCUIv+0PVNcC6ctXziUzI5lZKB1bCtGWQ1YM3BJCYv24/FAu//owVdG1e56jWsVoP41EyOnrnAsbMXCKnoQWRtLbgof7mR39+amygiIjaN77UNkJ73BGz+ErZ8Df51ILARBDaEoCYQ2gFcbnzX9yBfN4J83fIcax1agXPp2XwRe5TnZm0l0NeNFtUr5Glz9Ew678YcYMuxcxw/m0F27l/jmiwWmPl4W606LTdFPUD5UA+QiJRrO76DJSPhfMLlr7l4Q6Pe0OxBCIn4a2ZZxjnbmKOd822z0SrVs/UiNb7XtsDjFeRaDZ74ciMxexLx93Rh3jPtqe7vwbn0bN79dT9frz1KTu5fv6acHCxUq+COo4OFg6fTqernzqJht2jBRQF0C6zAFIBEpNwzDFsAit8BCX8+4tbZ9i67pGItaNDT1ubQCtsq1v/L2cO2+WuL/uDqbVtzKOkAnNlvW8/IrzqZYd35xwpvNp/KplYlT/q2qMa0lQdJy7RtGXJr3Uo82qEmtQI8CfazhZ/zWRe5+/9WEXf2Aj2bBfN/DzQvnp+LlGgKQAWkACQikg+rFeJiYesM2DkPctLzvl65gS0Qhd0JcWth0xeQtPe6Lm04ufOrtTnfZbbiV2tzMnGlfhUfXrw7nFvCKuV7zua4c9w3LZZcq8Hk6Gb0al61oJ9QSjkFoAJSABIRuYas87Y1hw4sg0rhtuBTqW7eNoYBx9bbFlzcOc+2u71/GATUhYA6tjWJTm6FXfMh+a+epRS8OF5vAOE9/o2j59U3f528bB+Tl+3H29WJRcNuIaTijY9PkrJDAaiAFIBERArZpV81+a33Yxhwcgvsmo+x43ssKcdsx128oOVAiBwMPlVsoev0nj9vye0CDHIDwnkp1uDHU340DK3Kt0+0xdHBwoXsi8QePMPKfadJSM2kiq871Sq4U9XPnaoV3KlR0RNfD40bKmsUgApIAUhExCS5F209Qr+/Yws6AI4u4BMM545c9dQ4ayWSvcM44lCN1ef82Z0bzEEjmHTyn8ofVtmL1jUr0ia0Iq2DXah6Me6voHaJe4UCbTArxUsBqIAUgERETGYYsH8prJoEx9b+ddwr0DYlv3IDsDhA4i5I2Alpp654qVT3EA54t2a9U0tWZodzMAUS07JwJZvbHbbS3TGWTg5bcLdk53t+VpOHcb3nLXB2y/d1KTkUgApIAUhEpAQ5uQUyU23BxzMg3yZG+hnmLPqZnPhdtHBPINQ4jlvyASzpiXkbOrpA9UiyXCrgePAXnC7+tUXIacOXDMMlT/NqliQcLAbp/o3xfHgG+FW/vppzL0L8NtsaSk4u124vhUIBqIAUgEREyogLZ20DsQ8stfUoJR/N+7pvdWjUm4x6PTlgqU1yZg7JF3JIzsghOT2bo+t/5KXMSVSwnCfTyReX6M9wCOt05ffLvQjbZ8NvE23T/IOawL2fQkDY9ddszYVdP9jODahzc5+7nFIAKiAFIBGRMsgw4MxBWxi6cAbqdoGqLfMfmP2ntMwcJs5eRt8DL9LU4RBWLGS2ex6PZn3BO8i2yKPFArk5sG0W/PYWnDuc9yLOHtDlDXKbPcymuGQaVfXBw+UKGzFYrbBgMGz9xjYIvN9MqHlLIf4QyjYFoAJSABIRkUsMw2D22gMYi//DAw4xeV909rAFoZxMSDtpO+YRAO2HQnh3WPhPOLwSgFXO7Xk2bQABlQL5uH8ralXy+t83srXf9Nlfxxxd4f4voV6XIvyEZceN/P4unK1+RUREyiiLxUJ0ZBhNn/6cN9yGsdsaQiqethdzLthudaWdBM9KcOer8Nw2aD8M/Gtztu9sFgU9TY7hyC05q1nsOpKwM8vpNXUVy/f+bXySYcCSEX+GHwv0nAr17obcLJj1IGybY8pnL8vUA5QP9QCJiEh+UjNzeOjjdWw7nkKIF8z8RyhVHZIhOx1C24OLLRhZrQazNh5jwpI9JF/IobHlEJ96f0Cl7BMAHLAG82Fud+pGPcpjHetiWTYa1rxre5OeU6H5Q7bbavOfsY0pwgLd3oLWj0FGsm2JgPjttllw/mG24zexSW1Zo1tgBaQAJCIiV3IuPZsHpq9lb0IaVf3cmf1UJFX9/lpraNX+07y+aA+7T6UCEB7kzau9GtG6igv8/g7G+ulYsmyvnTQqEu/TlBZpy20nd38HWj3y15tZrbD4Bdjwke25TzVIPX55Ud7B0OkVaPIAOFznzZ2sNMACrl7XbFpaKAAVkAKQiIhcTWJaJg98uJZDSenUDPBk1pNtSUrL5o0le/ht32kAvF2dGBYVxsB2oTg5/i2UZKZibPyMjN/exSM7yX7Y2nk8DpHPXP5mhgG//hdWvfXXMd/qENTYNktsx7y/NqkNagx3vQa1OtrOy0yG9DNwIcm2kGTiLkjcDYl7bOc4ONv2bmt8H9TrCs75LBppGGBYwcGx4D+4IqYAVEAKQCIici0nkzO4b1osJ5IzCPBy5Ux6FoYBzo4WHm4byuA76lDR8yprAOVkciDmY1Jiv2TexXYE3P4Mz0XVzbfprpOpTP38c4K8XXioV3dqhlTLcx3Wfwi/TYKsFNsxjwBb+LFevP4P5OIN9e+Baq1se7OdPfTXw7BC3c7QqC+E3ZV/UMrPxSzbtfzrXHW2XWFRACogBSAREbkeR8+kc/+HsSSkZgHQvUkVnu9cjxr+ntd9je83H2f47D+wWODzQW3oWLdSntcPJ6Vz37Q1JJ23rVTt6uTA8Dvr8tgttXB0+FuoSD8DKyfAxk/yBh8Xb/D0B5+qULm+7VHpzz/PJ8C22bB97l+9SNfi4gXh3aB+Dwhubtum5O/hxmqFuDW26+6aD5kptuDU4z37GKmiogBUQApAIiJyvY4kpfPt+ji6Nq5CsxC/m7rGyO+38+36OCp4OLNw6C32MUV/72VqUMUHfy8XVu233TZrGuLHxHubUDfQO+/F0uLhfKJt1Wz3ite3hYfVCsfWwfY5kHIMKoRCxVpQsbbtz+w02DkPdnxve/3v3HyhckPbSt1OrrBzfv7jlCo3gPu/KtLFHRWACkgBSEREilNmTi73TlvDjhOpNAvxY/aTkaRm5nD/h7EcOp1OrQBPZj8Vib+nC3M2HufVn3aRlnkRF0cH+rasSpNqfjSo4kO9IG/cnItwrI5hwPENsOM7OLQSzuzP/zabqw806AGN77eNHZr7iK23ydUHek+z9SAVAQWgAlIAEhGR4nbs7AW6v/c7KRk5PNA6hO0nUth5MpWqfu7MeSqS4L/NNItPyeTFedv5dU/evc4cHSzUruRJp/qBDL0jDHeXIh64fDELkvbZNqRN2GnbeiTsTtsq23/veUqLhzkDIS7W9rzDcLjj5UIfWK0AVEAKQCIiYoaY3Qk8+sVG+/MALxdmPxl5+arR2FaoXrH3NGsPnWHXqVR2nkzlbPpfO9qH+nsw8b6mtA6tWCy1X1NuDvzyCqz7wPa80b1w7yeF+hYKQAWkACQiImZ5c8ke3l9xEG83J2Y+0ZaGwb7XdZ5hGCSkZrHu8BneWLyHUymZWCzwaPua/LtzvZu6NRafksmy3QkcP5dBzQAP6lT2pk5lL3zdnW/4Wnbb59q2/Ij+CmrddvPXyYcCUAEpAImIiFlyrQaLd5yiYbAvNQNubtZUamYO/124i9kbbYORawV4Mqh9KKfPZ3PiXAYnkzM4kZyBxQJ1A70JD/KmXpA34UE+ZF+0smx3Akt3JbD9REq+16/k7UqTqr6M6BpO2P8Owr4eGefAvcJNfbarUQAqIAUgEREpC5bvSWTE99vs0/RvlMUCzUP8aBDsw9EzFziQeJ5TKZn2112dHHi5ewMeiqiOpRjW+bmWUheApk6dysSJE4mPj6dp06a89957tGnT5ort58yZwyuvvMKRI0cICwtjwoQJ3H333QDk5OTw8ssvs2jRIg4dOoSvry9RUVG88cYbBAcHX1c9CkAiIlJWpFzIYXLMPg4npRPs505VP3eC/dyo6ufBRauVvfFp7I1PY3d8Gvvi07AaBreEBXBng0DuCA+kkrdrnuudz7rI/oQ0Ji/bz8o/V72Oqh/Im/c2ufrCj8WgVAWgWbNm0b9/f6ZNm0ZERASTJ09mzpw57N27l8qVK1/Wfs2aNdx6662MHz+e7t27M2PGDCZMmMDmzZtp1KgRKSkp3HvvvTz++OM0bdqUc+fOMWzYMHJzc9m4cWM+FVxOAUhERMojq9XAahh5t+64StvP1hxhwuI9ZOdaqeztyht9GxNW2du2ewYGVgOshsHFXIOcXCsXrQYXc61k51qp6ud+QwtGXo9SFYAiIiJo3bo1U6ZMAcBqtRISEsKQIUMYMWLEZe2jo6NJT09n4cKF9mNt27alWbNmTJs2Ld/32LBhA23atOHo0aNUr179mjUpAImIiFyfnSdTGPrtFg6eTr+h8wbfXod/d65XqLXcyO/v69wytmhkZ2ezadMmoqKi7MccHByIiooiNjY233NiY2PztAfo3LnzFdsDpKSkYLFY8PPzy/f1rKwsUlNT8zxERETk2hoG+7JwyC083LYGXq5OuDk74OHiiKeLI16uTni7OVHR04XK3q5U9XMn1N+DsMpe+HkUYCZZIXAy882TkpLIzc0lMDAwz/HAwED27NmT7znx8fH5to+Pj8+3fWZmJv/5z3/o16/fFdPg+PHjGTt27E18AhEREXF3ceTVXo14tVcjs0u5bqb2ABW1nJwc7r//fgzD4IMPPrhiu5EjR5KSkmJ/HDt27IptRUREpPQztQcoICAAR0dHEhIS8hxPSEggKCgo33OCgoKuq/2l8HP06FF+/fXXq94LdHV1xdXV9Yqvi4iISNliag+Qi4sLLVu2JCYmxn7MarUSExNDZGRkvudERkbmaQ+wdOnSPO0vhZ/9+/ezbNky/P39i+YDiIiISKlkag8QwPDhwxkwYACtWrWiTZs2TJ48mfT0dAYNGgRA//79qVq1KuPHjwdg2LBhdOzYkUmTJtGtWzdmzpzJxo0bmT59OmALP/feey+bN29m4cKF5Obm2scHVaxYERcXc9coEBEREfOZHoCio6M5ffo0o0aNIj4+nmbNmrFkyRL7QOe4uDgcHP7qqGrXrh0zZszg5Zdf5sUXXyQsLIz58+fTqJFt4NWJEydYsGABAM2aNcvzXsuXL+e2224rls8lIiIiJZfp6wCVRFoHSEREpPQpNesAiYiIiJhBAUhERETKHQUgERERKXcUgERERKTcUQASERGRckcBSERERModBSAREREpdxSAREREpNwxfSXokujS2pCpqakmVyIiIiLX69Lv7etZ41kBKB9paWkAhISEmFyJiIiI3Ki0tDR8fX2v2kZbYeTDarVy8uRJvL29sVgsN32d1NRUQkJCOHbsmLbUKCH0nZQ8+k5KHn0nJZO+l2szDIO0tDSCg4Pz7COaH/UA5cPBwYFq1aoV2vV8fHz0P9YSRt9JyaPvpOTRd1Iy6Xu5umv1/FyiQdAiIiJS7igAiYiISLmjAFSEXF1dGT16NK6urmaXIn/Sd1Ly6DspefSdlEz6XgqXBkGLiIhIuaMeIBERESl3FIBERESk3FEAEhERkXJHAUhERETKHQWgIjJ16lRCQ0Nxc3MjIiKC9evXm11SuTF+/Hhat26Nt7c3lStXplevXuzduzdPm8zMTJ599ln8/f3x8vKib9++JCQkmFRx+fPGG29gsVh47rnn7Mf0nZjjxIkTPPTQQ/j7++Pu7k7jxo3ZuHGj/XXDMBg1ahRVqlTB3d2dqKgo9u/fb2LFZVtubi6vvPIKNWvWxN3dndq1a/Pqq6/m2dtK30nhUAAqArNmzWL48OGMHj2azZs307RpUzp37kxiYqLZpZULK1eu5Nlnn2Xt2rUsXbqUnJwc7rrrLtLT0+1t/vnPf/Ljjz8yZ84cVq5cycmTJ+nTp4+JVZcfGzZs4MMPP6RJkyZ5jus7KX7nzp2jffv2ODs7s3jxYnbt2sWkSZOoUKGCvc2bb77Ju+++y7Rp01i3bh2enp507tyZzMxMEysvuyZMmMAHH3zAlClT2L17NxMmTODNN9/kvffes7fRd1JIDCl0bdq0MZ599ln789zcXCM4ONgYP368iVWVX4mJiQZgrFy50jAMw0hOTjacnZ2NOXPm2Nvs3r3bAIzY2FizyiwX0tLSjLCwMGPp0qVGx44djWHDhhmGoe/ELP/5z3+MDh06XPF1q9VqBAUFGRMnTrQfS05ONlxdXY1vv/22OEosd7p162Y88sgjeY716dPHePDBBw3D0HdSmNQDVMiys7PZtGkTUVFR9mMODg5ERUURGxtrYmXlV0pKCgAVK1YEYNOmTeTk5OT5jsLDw6levbq+oyL27LPP0q1btzw/e9B3YpYFCxbQqlUr7rvvPipXrkzz5s356KOP7K8fPnyY+Pj4PN+Lr68vERER+l6KSLt27YiJiWHfvn0A/PHHH/z+++907doV0HdSmLQZaiFLSkoiNzeXwMDAPMcDAwPZs2ePSVWVX1arleeee4727dvTqFEjAOLj43FxccHPzy9P28DAQOLj402osnyYOXMmmzdvZsOGDZe9pu/EHIcOHeKDDz5g+PDhvPjii2zYsIGhQ4fi4uLCgAED7D/7/P490/dSNEaMGEFqairh4eE4OjqSm5vLa6+9xoMPPgig76QQKQBJmfbss8+yY8cOfv/9d7NLKdeOHTvGsGHDWLp0KW5ubmaXI3+yWq20atWK119/HYDmzZuzY8cOpk2bxoABA0yurnyaPXs233zzDTNmzKBhw4Zs3bqV5557juDgYH0nhUy3wApZQEAAjo6Ol81eSUhIICgoyKSqyqfBgwezcOFCli9fTrVq1ezHg4KCyM7OJjk5OU97fUdFZ9OmTSQmJtKiRQucnJxwcnJi5cqVvPvuuzg5OREYGKjvxARVqlShQYMGeY7Vr1+fuLg4APvPXv+eFZ/nn3+eESNG8MADD9C4cWMefvhh/vnPfzJ+/HhA30lhUgAqZC4uLrRs2ZKYmBj7MavVSkxMDJGRkSZWVn4YhsHgwYOZN28ev/76KzVr1szzesuWLXF2ds7zHe3du5e4uDh9R0WkU6dObN++na1bt9ofrVq14sEHH7T/Xd9J8Wvfvv1lS0Ts27ePGjVqAFCzZk2CgoLyfC+pqamsW7dO30sRuXDhAg4OeX81Ozo6YrVaAX0nhcrsUdhl0cyZMw1XV1fj888/N3bt2mU88cQThp+fnxEfH292aeXC008/bfj6+horVqwwTp06ZX9cuHDB3uapp54yqlevbvz666/Gxo0bjcjISCMyMtLEqsufv88CMwx9J2ZYv3694eTkZLz22mvG/v37jW+++cbw8PAwvv76a3ubN954w/Dz8zN++OEHY9u2bUbPnj2NmjVrGhkZGSZWXnYNGDDAqFq1qrFw4ULj8OHDxvfff28EBAQYL7zwgr2NvpPCoQBURN577z2jevXqhouLi9GmTRtj7dq1ZpdUbgD5Pj777DN7m4yMDOOZZ54xKlSoYHh4eBi9e/c2Tp06ZV7R5dD/BiB9J+b48ccfjUaNGhmurq5GeHi4MX369DyvW61W45VXXjECAwMNV1dXo1OnTsbevXtNqrbsS01NNYYNG2ZUr17dcHNzM2rVqmW89NJLRlZWlr2NvpPCYTGMvy0vKSIiIlIOaAyQiIiIlDsKQCIiIlLuKACJiIhIuaMAJCIiIuWOApCIiIiUOwpAIiIiUu4oAImIiEi5owAkInIFFouF+fPnm12GiBQBBSARKZEGDhyIxWK57NGlSxezSxORMsDJ7AJERK6kS5cufPbZZ3mOubq6mlSNiJQl6gESkRLL1dWVoKCgPI8KFSoAtttTH3zwAV27dsXd3Z1atWoxd+7cPOdv376dO+64A3d3d/z9/XniiSc4f/58njaffvopDRs2xNXVlSpVqjB48OA8ryclJdG7d288PDwICwtjwYIF9tfOnTvHgw8+SKVKlXB3dycsLOyywCYiJZMCkIiUWq+88gp9+/bljz/+4MEHH+SBBx5g9+7dAKSnp9O5c2cqVKjAhg0bmDNnDsuWLcsTcD744AOeffZZnnjiCbZv386CBQuoU6dOnvcYO3Ys999/P9u2bePuu+/mwQcf5OzZs/b337VrF4sXL2b37t188MEHBAQEFN8PQERuntm7sYqI5GfAgAGGo6Oj4enpmefx2muvGYZhGIDx1FNP5TknIiLCePrppw3DMIzp06cbFSpUMM6fP29//aeffjIcHByM+Ph4wzAMIzg42HjppZeuWANgvPzyy/bn58+fNwBj8eLFhmEYxj333GMMGjSocD6wiBQrjQESkRLr9ttv54MPPshzrGLFiva/R0ZG5nktMjKSrVu3ArB7926aNm2Kp6en/fX27dtjtVrZu3cvFouFkydP0qlTp6vW0KRJE/vfPT098fHxITExEYCnn36avn37snnzZu666y569epFu3btbuqzikjxUgASkRLL09PzsltShcXd3f262jk7O+d5brFYsFqtAHTt2pWjR4+yaNEili5dSqdOnXj22Wd56623Cr1eESlcGgMkIqXW2rVrL3tev359AOrXr88ff/xBenq6/fXVq1fj4OBAvXr18Pb2JjQ0lJiYmALVUKlSJQYMGMDXX3/N5MmTmT59eoGuJyLFQz1AIlJiZWVlER8fn+eYk5OTfaDxnDlzaNWqFR06dOCbb75h/fr1fPLJJwA8+OCDjB49mgEDBjBmzBhOnz7NkCFDePjhhwkMDARgzJgxPPXUU1SuXJmuXbuSlpbG6tWrGTJkyHXVN2rUKFq2bEnDhg3Jyspi4cKF9gAmIiWbApCIlFhLliyhSpUqeY7Vq1ePPXv2ALYZWjNnzuSZZ56hSpUqfPvttzRo0AAADw8Pfv75Z4YNG0br1q3x8PCgb9++vP322/ZrDRgwgMzMTN555x3+/e9/ExAQwL333nvd9bm4uDBy5EiOHDmCu7s7t9xyCzNnziyETy4iRc1iGIZhdhEiIjfKYrEwb948evXqZXYpIlIKaQyQiIiIlDsKQCIiIlLuaAyQiJRKunsvIgWhHiAREREpdxSAREREpNxRABIREZFyRwFIREREyh0FIBERESl3FIBERESk3FEAEhERkXJHAUhERETKHQUgERERKXf+H7ZokyJnjmeEAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"# Assuming you store losses during training like this:\n",
"train_losses = []\n",
"test_losses = []\n",
"\n",
"for epoch in range(epochs):\n",
" total_train_loss = 0\n",
" total_test_loss = 0\n",
"\n",
" model.train()\n",
" for batch in train_dataloader:\n",
" inputs, labels = batch\n",
" optimizer.zero_grad()\n",
" outputs = model(**inputs)\n",
" loss = loss_fn(outputs.logits, labels)\n",
" loss.backward()\n",
" optimizer.step()\n",
" total_train_loss += loss.item()\n",
" \n",
" model.eval()\n",
" with torch.no_grad():\n",
" for batch in test_dataloader:\n",
" inputs, labels = batch\n",
" outputs = model(**inputs)\n",
" loss = loss_fn(outputs.logits, labels)\n",
" total_test_loss += loss.item()\n",
"\n",
" train_losses.append(total_train_loss / len(train_dataloader))\n",
" test_losses.append(total_test_loss / len(test_dataloader))\n",
"\n",
"# Plot the loss curves\n",
"plt.plot(range(1, epochs+1), train_losses, label=\"Train Loss\")\n",
"plt.plot(range(1, epochs+1), test_losses, label=\"Test Loss\")\n",
"plt.xlabel(\"Epochs\")\n",
"plt.ylabel(\"Loss\")\n",
"plt.legend()\n",
"plt.title(\"Training vs. Test Loss\")\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-14T06:20:24.796070Z",
"iopub.status.busy": "2025-03-14T06:20:24.795687Z",
"iopub.status.idle": "2025-03-14T06:20:24.907652Z",
"shell.execute_reply": "2025-03-14T06:20:24.906513Z",
"shell.execute_reply.started": "2025-03-14T06:20:24.796036Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"User: Tell me a joke\n",
"Bot: Did you hear about the mathematician who’s afraid of negative numbers? He’ll stop at nothing to avoid them!\n",
"\n",
"User: Recommend a good book\n",
"Bot: As an AI, I don't have personal preferences, but there are countless amazing books in various genres. Some popular ones include Harry Potter, To Kill a Mockingbird, and 1984.\n",
"\n",
"User: What's the weather like today?\n",
"Bot: I'm sorry, I cannot provide real-time weather information.\n",
"\n",
"User: How can I save money?\n",
"Bot: Investing in stocks, mutual funds, or real estate can help grow your wealth over time.\n",
"\n",
"User: How do I meditate?\n",
"Bot: Meditation can reduce stress, improve focus, and promote emotional well-being.\n",
"\n"
]
}
],
"source": [
"# Testing on New Data to test model generalization\n",
"test_inputs = [\n",
" \"Tell me a joke\", \n",
" \"Recommend a good book\", \n",
" \"What's the weather like today?\", \n",
" \"How can I save money?\", \n",
" \"How do I meditate?\"\n",
"]\n",
"\n",
"for input_text in test_inputs:\n",
" response = predict_intent(input_text)\n",
" print(f\"User: {input_text}\\nBot: {response}\\n\")\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-14T06:20:24.909244Z",
"iopub.status.busy": "2025-03-14T06:20:24.908862Z",
"iopub.status.idle": "2025-03-14T06:20:25.664937Z",
"shell.execute_reply": "2025-03-14T06:20:25.664169Z",
"shell.execute_reply.started": "2025-03-14T06:20:24.909206Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model saved to bert_chatbot_model.pth\n",
"Tokenizer saved to bert_chatbot_tokenizer\n"
]
}
],
"source": [
"# Define save paths\n",
"model_path = \"bert_chatbot_model.pth\"\n",
"tokenizer_path = \"bert_chatbot_tokenizer\"\n",
"\n",
"# Save model state dictionary\n",
"torch.save(model.state_dict(), model_path)\n",
"\n",
"# Save tokenizer\n",
"tokenizer.save_pretrained(tokenizer_path)\n",
"\n",
"print(f\"Model saved to {model_path}\")\n",
"print(f\"Tokenizer saved to {tokenizer_path}\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-14T06:20:25.666894Z",
"iopub.status.busy": "2025-03-14T06:20:25.666633Z",
"iopub.status.idle": "2025-03-14T06:20:26.840930Z",
"shell.execute_reply": "2025-03-14T06:20:26.839944Z",
"shell.execute_reply.started": "2025-03-14T06:20:25.666873Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"('chatbot_model/tokenizer_config.json',\n",
" 'chatbot_model/special_tokens_map.json',\n",
" 'chatbot_model/vocab.txt',\n",
" 'chatbot_model/added_tokens.json')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.save_pretrained(\"chatbot_model\")\n",
"tokenizer.save_pretrained(\"chatbot_model\")"
]
}
],
"metadata": {
"kaggle": {
"accelerator": "nvidiaTeslaT4",
"dataSources": [
{
"datasetId": 6860959,
"sourceId": 11018742,
"sourceType": "datasetVersion"
}
],
"dockerImageVersionId": 30919,
"isGpuEnabled": true,
"isInternetEnabled": true,
"language": "python",
"sourceType": "notebook"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.20"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|