File size: 6,363 Bytes
6bc5fb7
 
 
 
5d0c611
6bc5fb7
 
 
 
 
7fc2c5f
6bc5fb7
3a1d273
880bb75
3a1d273
6bc5fb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d0c611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bc5fb7
 
 
 
 
 
 
5d0c611
6bc5fb7
 
 
 
 
 
 
 
 
5d0c611
6bc5fb7
 
5d0c611
6bc5fb7
7fc2c5f
5d0c611
 
6bc5fb7
7fc2c5f
5d0c611
7fc2c5f
 
614f6a8
7fc2c5f
5d0c611
614f6a8
 
7fc2c5f
5d0c611
 
7fc2c5f
614f6a8
 
 
 
 
 
 
 
 
 
 
 
 
 
7fc2c5f
614f6a8
7fc2c5f
 
5d0c611
7fc2c5f
614f6a8
 
 
 
 
 
 
 
 
 
 
 
7fc2c5f
5d0c611
7fc2c5f
6bc5fb7
 
 
 
 
5d0c611
614f6a8
5d0c611
 
 
 
 
 
 
 
6bc5fb7
 
5d0c611
 
 
6bc5fb7
 
5d0c611
 
 
 
6bc5fb7
5d0c611
6bc5fb7
 
 
 
 
 
 
614f6a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c830f64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import streamlit as st
import torch
from transformers import BertTokenizer, BertForSequenceClassification
import json
import os
import time
import datetime
import random
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_extras.let_it_rain import rain
from streamlit_modal import Modal

# Streamlit UI
st.set_page_config(page_title="🧠ChatBot🤖", layout="wide")

# Load BERT Model & Tokenizer
MODEL_PATH = "Trained Model/chatbot_model"  # Path where your model & tokenizer are saved

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load model & tokenizer
tokenizer = BertTokenizer.from_pretrained(MODEL_PATH)
model = BertForSequenceClassification.from_pretrained(MODEL_PATH)
model.to(device)
model.eval()

# Load intents
with open("intents.json", "r") as file:
    intents = json.load(file)

intent_mapping = {i: intent['tag'] for i, intent in enumerate(intents)}

# Chat history file
CHAT_HISTORY_FILE = "chat_history.json"

# Load Chat History (Ensuring Persistence)
def load_chat_history():
    if os.path.exists(CHAT_HISTORY_FILE):
        with open(CHAT_HISTORY_FILE, "r") as file:
            return json.load(file)
    return []

# Save Chat History
def save_chat_history():
    with open(CHAT_HISTORY_FILE, "w") as file:
        json.dump(st.session_state.chat_history, file)

# Initialize session state variables
if "chat_history" not in st.session_state:
    st.session_state.chat_history = load_chat_history()
if "show_history" not in st.session_state:
    st.session_state.show_history = False
if "show_about" not in st.session_state:
    st.session_state.show_about = False
if "chat_input" not in st.session_state:
    st.session_state.chat_input = ""

def predict_intent(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
    with torch.no_grad():
        outputs = model(**inputs)

    predicted_index = torch.argmax(outputs.logits, dim=1).item()
    return intent_mapping.get(predicted_index, "unknown")

def get_response(intent_label):
    for intent in intents:
        if intent_label == intent['tag']:
            return random.choice(intent['responses'])
    return "I'm not sure how to respond to that."

# Sidebar menu
with st.sidebar:
    st.image("Images/Bot Image.jpeg", use_container_width=True)
    st.title("💬 Chatbot Menu")
    add_vertical_space(1)

    if st.button("🆕 New Chat"):
        st.session_state.chat_input = ""
        save_chat_history()

    if st.button("📜 Chat History"):
        st.session_state.show_history = True

    if st.button("ℹ️ About"):
        st.session_state.show_about = True
    st.caption("🚀 Built with ❤️ by AI Enthusiast")

# Modal Windows (Chat History & About)
history_modal = Modal("📜Chat History", key="history_modal")
about_modal = Modal("ℹ️About", key="about_modal")

# Display chat history without affecting the chat window
if st.session_state.show_history:
    with history_modal.container():
        if st.session_state.chat_history:
            for chat in st.session_state.chat_history[-10:]:  # Show last 10 messages
                st.write(chat)
        else:
            st.info("No chat history available.")

        # Clear History Button
        if st.button("🗑 Clear History", key="clear_history"):
            st.session_state.chat_history = []  # Clear session history
            if os.path.exists(CHAT_HISTORY_FILE):
                os.remove(CHAT_HISTORY_FILE)  # Delete saved file
            st.rerun()  # Refresh UI to reflect changes

        # Close Modal Button
        if st.button("Close", key="close_history"):
            st.session_state.show_history = False
            st.rerun()

if st.session_state.show_about:
    with about_modal.container():
        st.info("""This chatbot is powered by a deep learning approach using Hugging Face Transformers and a BERT model for intent recognition. 
It understands user queries by predicting intent and responding with predefined answers based on a trained dataset. 

✅ Natural Language Processing (NLP)​
                
🔹 Transformers (Hugging Face) 🤖 – BERT-based intent classification​

✅ Deep Learning​
                
🔹 PyTorch 🔥 – Model training & fine-tuning
""")
        
        if st.button("Close", key="close_about"):
            st.session_state.show_about = False  # Close modal without resetting UI
            st.rerun()

# Chat UI
st.title("🤖 AI Chatbot")
st.markdown("### Talk to me, I'm listening...")

rain(emoji="💬", font_size=10, falling_speed=5, animation_length="infinite")
rain(emoji="❄️", font_size=10, falling_speed=5, animation_length="infinite")

# Chat Input with Enter Button
with st.form("chat_form", clear_on_submit=True):
    chat_input = st.text_input("You:", key="chat_input")
    submit_button = st.form_submit_button("Enter")

if submit_button and chat_input:
    intent_label = predict_intent(chat_input)
    response = get_response(intent_label)
    chat_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")

    # Append messages to chat history (User & Bot)
    st.session_state.chat_history.append(f"[{chat_time}] You: {chat_input}")
    st.session_state.chat_history.append(f"[{chat_time}] Bot: {response}")

    # Save chat history persistently
    save_chat_history()

    # Display conversation immediately
    with st.chat_message("user"):
        st.markdown(f"**You:** {chat_input}")
        time.sleep(0.5)
    with st.chat_message("assistant"):
        st.markdown(f"**Bot:** {response}")

# Style customization
st.markdown("""
<style>

    /* Fix Modal Height & Enable Scroll */
    div[data-modal-container="true"] {
        position: fixed !important;
        top: 5% !important;  /* Adjust this value to position it higher */
        color: #000000;
        max-height: 1000px !important;  /* Set max height */
    }

    /* Ensure the close button stays visible */
    div[data-modal-container="true"] button {
        position: sticky;
        bottom: 10px;
        background-color: #000000;
        color: white;
    }
            
    .stChatMessage {padding: 10px; border-radius: 10px; background-color: #900C3F;}
    .stChatMessageUser {background-color: #900C3F;}
    .stChatMessageAssistant {background-color: #900C3F;}
</style>""", unsafe_allow_html=True)