Spaces:
Sleeping
Sleeping
File size: 7,870 Bytes
3dff4cb e9840df 46a768d 2c230be 49dbc00 e9840df 3dff4cb e9840df ef9e1ba e9840df ef9e1ba e9840df fafce48 8ae1bd1 d2237c8 8ae1bd1 e2b4917 e9840df 6814430 e9840df 3dff4cb 688f875 49dbc00 90fc7ac e9840df 8da2c81 e9840df 8da2c81 e9840df 8da2c81 57005dc 6814430 57005dc 6814430 e9840df fafce48 e9840df 3edae51 e9840df 3edae51 e9840df 3edae51 e9840df 3edae51 31f4dd5 7232b90 3b8e35c 7232b90 31f4dd5 7232b90 31f4dd5 7232b90 de8093f e9840df 1c52547 e9840df 1c52547 e9840df 1c52547 e9840df 5a2a128 90fc7ac 36b9066 49dbc00 e9840df a5b8a59 46a768d f95de96 46a768d f95de96 ee9bd35 2968e66 3b8e35c bcc7659 46a768d b04aa25 46a768d e9840df c2e3e8e 31c19b2 e9840df b04aa25 f9e518b b04aa25 f9e518b b04aa25 a5b8a59 b04aa25 8da2c81 b04aa25 4d8a5d0 fdcda98 bc0dc94 46a768d a5b8a59 3b8e35c 31c19b2 a5b8a59 2af3209 571b70a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
import gradio as gr
import time
from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader,OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import FAISS
from langchain import HuggingFaceHub
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
DEVICE = 'cpu'
FILE_EXT = ['pdf','text','csv','word','wav']
DEFAULT_SYSTEM_PROMPT = "As a chatbot you are answering questions being requested."
MAX_NEW_TOKENS = 4096
DEFAULT_TEMPERATURE = 0.1
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = 4000
def loading_file():
return "Loading..."
def get_openai_chat_model(API_key):
try:
from langchain.llms import OpenAI
except ImportError as err:
raise "{}, unable to load openAI. Please install openai and add OPENAIAPI_KEY"
os.environ["OPENAI_API_KEY"] = API_key
llm = OpenAI()
return llm
def process_documents(documents,data_chunk=1500,chunk_overlap=100):
text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n')
texts = text_splitter.split_documents(documents)
return texts
def get_hugging_face_model(model_id,API_key,temperature=0.1,max_tokens=4096):
chat_llm = HuggingFaceHub(huggingfacehub_api_token=API_key,
repo_id=model_id,
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens})
return chat_llm
def chat_application(llm_service,key,temperature=0.1,max_tokens=1024):
if llm_service == 'HuggingFace':
llm = get_hugging_face_model(model_id='tiiuae/falcon-7b-instruct',API_key=key)
else:
llm = get_openai_chat_model(API_key=key)
return llm
def document_loader(file_path,api_key,doc_type='pdf',llm='HuggingFace',temperature=0.1,max_tokens=4096):
document = None
if doc_type == 'pdf':
document = process_pdf_document(document_file=file_path)
elif doc_type == 'text':
document = process_text_document(document_file=file_path)
elif doc_type == 'csv':
document = process_csv_document(document_file=file_path)
elif doc_type == 'word':
document = process_word_document(document_file=file_path)
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-base',model_kwargs={"device": DEVICE})
texts = process_documents(documents=document)
global vector_db
vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
global qa
qa = RetrievalQA.from_chain_type(llm=chat_application(llm_service=llm,key=api_key,
temperature=temperature,
max_tokens=max_tokens
),
chain_type='stuff',
retriever=vector_db.as_retriever(),
# chain_type_kwargs=chain_type_kwargs,
return_source_documents=True
)
return "Document Processing completed ..."
def process_text_document(document_file):
loader = TextLoader(document_file.name)
document = loader.load()
return document
def process_csv_document(document_file):
loader = CSVLoader(file_path=document_file.name)
document = loader.load()
return document
def process_word_document(document_file):
loader = UnstructuredWordDocumentLoader(file_path=document_file.name)
document = loader.load()
return document
def process_pdf_document(document_file):
print("Document File Name :",document_file.name)
loader = PDFMinerLoader(document_file.name)
document = loader.load()
return document
def clear_chat():
return []
def infer(question, history):
# res = []
# # for human, ai in history[:-1]:
# # pair = (human, ai)
# # res.append(pair)
# chat_history = res
print("Question in infer :",question)
result = qa({"query": question})
matching_docs_score = vector_db.similarity_search_with_score(question)
print(" Matching_doc ",matching_docs_score)
return result["result"]
def bot(history):
response = infer(history[-1][0], history)
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
def add_text(history, text):
history = history + [(text, None)]
return history, ""
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chat with Data • OpenAI/HuggingFace</h1>
<p style="text-align: center;">Upload a file from system,UpLoad file and generate embeddings, <br />
once status is ready, you can start asking questions about the data you uploaded without chat history <br />
and gives you option to use HuggingFace/OpenAI as LLM's, make sure to add your key.
</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Group():
chatbot = gr.Chatbot(height=300)
with gr.Row():
question = gr.Textbox(label="Type your question !",lines=1).style(full_width=True)
submit_btn = gr.Button(value="Send message", variant="primary", scale = 1)
clean_chat_btn = gr.Button("Delete Chat")
with gr.Column():
with gr.Box():
LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='Large Language Model Selection',info='LLM Service')
API_key = gr.Textbox(label="Add API key", type="password")
with gr.Column():
with gr.Box():
file_extension = gr.Dropdown(FILE_EXT, label="File Extensions", info="Select type of file to upload !")
pdf_doc = gr.File(label="Upload File to start QA", file_types=FILE_EXT, type="file")
with gr.Accordion(label='Advanced options', open=False):
max_new_tokens = gr.Slider(
label='Max new tokens',
minimum=2048,
maximum=MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label='Temperature',
minimum=0.1,
maximum=4.0,
step=0.1,
value=DEFAULT_TEMPERATURE,
)
with gr.Row():
langchain_status = gr.Textbox(label="Status", placeholder="", interactive = False)
load_pdf = gr.Button("Upload File & Generate Embeddings",).style(full_width = False)
# chatbot = gr.Chatbot()l̥
# question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
# submit_button = gr.Button("Send Message")
if pdf_doc:
load_pdf.click(loading_file, None, langchain_status, queue=False)
load_pdf.click(document_loader, inputs=[pdf_doc,API_key,file_extension,LLM_option,temperature,max_new_tokens], outputs=[langchain_status], queue=False)
question.submit(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
submit_btn.click(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
# submit_btn.then(chatf.highlight_found_text, [chatbot, sources], [sources])
clean_chat_btn.click(clear_chat, [], chatbot)
demo.launch() |