Spaces:
Sleeping
Sleeping
File size: 6,251 Bytes
3dff4cb e9840df 2c230be 49dbc00 e9840df 3dff4cb e9840df ef9e1ba e9840df ef9e1ba e9840df 6814430 e9840df 3dff4cb e9840df 49dbc00 90fc7ac e9840df ef9e1ba 57005dc 6814430 57005dc 6814430 4d8a5d0 e9840df 3edae51 e9840df 3edae51 e9840df 3edae51 e9840df 3edae51 e9840df 3edae51 6814430 2af3209 6814430 ef9e1ba 730c378 3dff4cb 6814430 2af3209 6814430 e9840df 1c52547 e9840df 1c52547 e9840df 1c52547 e9840df 5a2a128 90fc7ac 36b9066 49dbc00 e9840df 2b30343 6814430 2b30343 e9840df 2b30343 6814430 2b30343 4d8a5d0 be312e0 4d8a5d0 6814430 4727b07 ef9e1ba 4d8a5d0 2af3209 571b70a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import os
import gradio as gr
from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader,OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import FAISS
from langchain import HuggingFaceHub
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
DEVICE = 'cpu'
FILE_EXT = ['pdf','text','csv','word','wav']
def loading_file():
return "Loading..."
def get_openai_chat_model(API_key):
try:
from langchain.llms import OpenAI
except ImportError as err:
raise "{}, unable to load openAI. Please install openai and add OPENAIAPI_KEY"
os.environ["OPENAI_API_KEY"] = API_key
llm = OpenAI()
return llm
def process_documents(documents,data_chunk=1000,chunk_overlap=50):
text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n')
texts = text_splitter.split_documents(documents)
return texts
def get_hugging_face_model(model_id,API_key,temperature=0.1):
chat_llm = HuggingFaceHub(huggingfacehub_api_token=API_key,
repo_id=model_id,
model_kwargs={"temperature": temperature, "max_new_tokens": 2048})
return chat_llm
def chat_application(llm_service,key):
if llm_service == 'HuggingFace':
llm = get_hugging_face_model(model_id='tiiuae/falcon-7b-instruct',API_key=key)
else:
llm = get_openai_chat_model(API_key=key)
return llm
def summarize_contents():
question = "Generate a summary of the contents. Do not return the response in json format"
return qa.run(question)
def document_loader(file_path,api_key,doc_type='pdf',llm='Huggingface'):
document = None
if doc_type == 'pdf':
document = process_pdf_document(document_file=file_path)
elif doc_type == 'text':
document = process_text_document(document_file=file_path)
elif doc_type == 'csv':
document = process_csv_document(document_file=file_path)
elif doc_type == 'word':
document = process_word_document(document_file=file_path)
if document:
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-base',model_kwargs={"device": DEVICE})
texts = process_documents(documents=document)
vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
global qa
qa = RetrievalQA.from_chain_type(llm=chat_application(llm_service=llm,key=api_key),
chain_type='stuff',
retriever=vector_db.as_retriever(),
# chain_type_kwargs=chain_type_kwargs,
# return_source_documents=True
)
else:
return "Error in loading Documents "
return "Document processing complete-Embeddings Created "
def process_text_document(document_file):
loader = TextLoader(document_file.name)
document = loader.load()
return document
def process_csv_document(document_file):
loader = CSVLoader(file_path=document_file.name)
document = loader.load()
return document
def process_word_document(document_file):
loader = UnstructuredWordDocumentLoader(file_path=document_file.name)
document = loader.load()
return document
def process_pdf_document(document_file):
print("Document File Name :",document_file.name)
loader = PDFMinerLoader(document_file.name)
document = loader.load()
return document
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chat with Data • OpenAI/HuggingFace</h1>
<p style="text-align: center;">Upload a file from your computer, click the "Load data to LangChain" button, <br />
when everything is ready, you can start asking questions about the data you uploaded ;) <br />
This version is just for QA retrival so it will not use chat history, and uses Hugging face as LLM,
so you don't need any key</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
with gr.Box():
gr.Row()
LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='Large Language Model Selection',info='LLM Service')
file_extension = gr.Dropdown(FILE_EXT, label="File Extensions", info="Select your files extensions!")
API_key = gr.Textbox(label="Add API key", type="password")
with gr.Column():
with gr.Box():
pdf_doc = gr.File(label="Upload File to start QA", file_types=FILE_EXT, type="file")
with gr.Row():
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=True)
load_pdf = gr.Button("Upload File & Generate Embeddings",).style(full_width=False)
with gr.Row():
summary = gr.Textbox(label="Summary")
summarize_pdf = gr.Button("Summarize the Contents").style(full_width=False)
chatbot = gr.Chatbot()
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
submit_button = gr.Button("Send Message")
load_pdf.click(loading_file, None, langchain_status, queue=False)
load_pdf.click(document_loader, inputs=[pdf_doc,API_key,file_extension,LLM_option], outputs=[langchain_status], queue=False)
summarize_pdf.click(summarize_contents,outputs=summary)
with gr.Column():
with gr.Row():
chatbot = gr.Chatbot(height=300)
sources = gr.HTML(value = "Source paragraphs where I looked for answers will appear here", height=300)
with gr.Row():
message = gr.Textbox(label="Type your question?",lines=1).style(full_width=False)
submit_query = gr.Button(value="Send message", variant="secondary", scale = 1)
demo.launch() |