File size: 6,571 Bytes
2faf743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import time
import gradio as gr
import logging
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.docstore.document import Document
from whisper_app import WHISPERModel
import llm_ops

FILE_EXT = ['wav','mp3']
MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
DEFAULT_TEMPERATURE = 0.1

def create_logger():
    formatter = logging.Formatter('%(asctime)s:%(levelname)s:- %(message)s')
    console_handler = logging.StreamHandler()
    console_handler.setLevel(logging.INFO)
    console_handler.setFormatter(formatter)

    logger = logging.getLogger("APT_Realignment")
    logger.setLevel(logging.INFO)

    if not logger.hasHandlers():
        logger.addHandler(console_handler)
    logger.propagate = False
    return logger


def create_prompt():
    prompt_template = """Asnwer the questions regarding the content in the Audio . 
    Use the following context to answer. 
    If you don't know the answer, just say I don't know. 

    {context}

    Question: {question}
    Answer :"""
    prompt = PromptTemplate(
        template=prompt_template, input_variables=["context", "question"]
    )
    return prompt


logger = create_logger()

def process_documents(documents,data_chunk=1500,chunk_overlap=100):
    text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n')
    texts = text_splitter.split_documents(documents)
    return texts

def audio_processor(wav_file,API_key,wav_model='small',llm='HuggingFace',temperature=0.1,max_tokens=4096):
    device='cpu'
    logger.info("Loading Whsiper Model || Model size:{}".format(wav_model))
    whisper = WHISPERModel(model_name=wav_model,device=device)
    text_info = whisper.speech_to_text(audio_path=wav_file)
    
    metadata = {"source": f"{wav_file}","duration":text_info['duration'],"language":text_info['language']}
    document = [Document(page_content=text_info['text'], metadata=metadata)]
    logger.info("Document",document)
    logging.info("Loading General Text Embeddings (GTE) model{}".format('thenlper/gte-large'))
    embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large',model_kwargs={"device": device})
    texts = process_documents(documents=document)
    global vector_db
    vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
    global qa
    if llm == 'HuggingFace':
        chat = llm_ops.get_hugging_face_model(
                            model_id="meta-llama/Llama-2-7b",
                            API_key=API_key,
                            temperature=temperature,
                            max_tokens=max_tokens
                            )
    else:
        chat = llm_ops.get_openai_chat_model(API_key=API_key)
    
    chain_type_kwargs = {"prompt": create_prompt()}

    qa = RetrievalQA.from_chain_type(llm=chat,
                                chain_type='stuff',
                                retriever=vector_db.as_retriever(),
                                chain_type_kwargs=chain_type_kwargs,
                                return_source_documents=True
                            )
    return "Audio Processing completed ..."

def infer(question, history):
    # res = []
    # for human, ai in history[:-1]:
    #     pair = (human, ai)
    #     res.append(pair)
    
    # chat_history = res

    result = qa({"query": question})
    matching_docs_score = vector_db.similarity_search_with_score(question)
    logger.info("Matching Score :",matching_docs_score)
    return result["result"]

def bot(history):
    response = infer(history[-1][0], history)
    history[-1][1] = ""
    
    for character in response:     
        history[-1][1] += character
        time.sleep(0.05)
        yield history

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""


def loading_file():
    return "Loading..."


css="""
#col-container {max-width: 2048px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 2048px;">
    <h1>Chat with Youtube Videos </h1>
    <p style="text-align: center;">Upload a youtube link of any video-lecture/song/Research/Conference & ask Questions to chatbot with the tool.
    <i> Tools uses State of the Art Models from  HuggingFace/OpenAI so, make sure to add your key.</i>
    </p>
</div>
"""
with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column(elem_id="col-container"):
            gr.HTML(title)
    
    with gr.Column():
        with gr.Row():
            LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='Select HuggingFace/OpenAI')
            API_key = gr.Textbox(label="Add API key", type="password",autofocus=True)
            wav_model = gr.Dropdown(['small','medium','large'],label='Select Whisper model')
    
    with gr.Group():    
        chatbot = gr.Chatbot(height=270)
    
    with gr.Row():
        question = gr.Textbox(label="Type your question !",lines=1).style(full_width=True)
    
    with gr.Row():
        submit_btn = gr.Button(value="Send message", variant="primary", scale = 1)
        clean_chat_btn =  gr.Button("Delete Chat")
    with gr.Column():
        with gr.Box():
            audio_file = gr.File(label="Upload Audio File ", file_types=FILE_EXT, type="file")
            with gr.Accordion(label='Advanced options', open=False):
                    max_new_tokens = gr.Slider(
                        label='Max new tokens',
                        minimum=2048,
                        maximum=MAX_NEW_TOKENS,
                        step=1,
                        value=DEFAULT_MAX_NEW_TOKENS,
                        )
                    temperature = gr.Slider(
                    label='Temperature',
                    minimum=0.1,
                    maximum=4.0,
                    step=0.1,
                    value=DEFAULT_TEMPERATURE,
                    )
            with gr.Row():
                    langchain_status = gr.Textbox(label="Status", placeholder="", interactive = False)
                    load_audio = gr.Button("Upload Audio File",).style(full_width = False)
    if audio_file:
        load_audio.click(loading_file, None, langchain_status, queue=False)    
        load_audio.click(audio_processor, inputs=[audio_file,API_key,wav_model,LLM_option,temperature,max_new_tokens], outputs=[langchain_status], queue=False)