File size: 7,043 Bytes
2faf743
 
 
 
 
 
 
 
 
43b366f
2faf743
 
 
 
 
 
99b2550
2faf743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04cd75a
 
 
2faf743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34a0eeb
2faf743
960ede5
99b2550
43b366f
960ede5
2144d43
2faf743
 
 
fe5b216
2faf743
 
fe5b216
2faf743
 
99b2550
2faf743
 
 
917fd95
2faf743
 
10351a2
2faf743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b9ed7
 
2faf743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917fd95
2faf743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc939d
2faf743
 
 
 
 
 
 
 
 
4f60d0b
2faf743
 
 
04cd75a
 
 
 
7350606
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import time
import gradio as gr
import logging
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.docstore.document import Document
import whisper_app
import llm_ops

FILE_EXT = ['wav','mp3']
MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
DEFAULT_TEMPERATURE = 0.1
DEFAULT_DURATION = 5

def create_logger():
    formatter = logging.Formatter('%(asctime)s:%(levelname)s:- %(message)s')
    console_handler = logging.StreamHandler()
    console_handler.setLevel(logging.INFO)
    console_handler.setFormatter(formatter)

    logger = logging.getLogger("APT_Realignment")
    logger.setLevel(logging.INFO)

    if not logger.hasHandlers():
        logger.addHandler(console_handler)
    logger.propagate = False
    return logger


def clear_chat():
    return []

def create_prompt():
    prompt_template = """Asnwer the questions regarding the content in the Audio . 
    Use the following context to answer. 
    If you don't know the answer, just say I don't know. 

    {context}

    Question: {question}
    Answer :"""
    prompt = PromptTemplate(
        template=prompt_template, input_variables=["context", "question"]
    )
    return prompt


logger = create_logger()

def process_documents(documents,data_chunk=1500,chunk_overlap=100):
    text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n')
    texts = text_splitter.split_documents(documents)
    return texts

def audio_processor(wav_file,API_key,wav_model='small',llm='HuggingFace',temperature=0.1,max_tokens=4096,duration=5):
    device='cpu'
    logger.info("Audio File Name :",wav_file.name)
    
    whisper = whisper_app.WHISPERModel(model_name=wav_model,device=device)
    logger.info("Whisper Model Loaded || Model size:{}".format(wav_model))
    text_info = whisper.speech_to_text(audio_path=wav_file.name)
    
    metadata = {"source": f"{wav_file}","duration":text_info['duration'],"language":text_info['language']}
    document = [Document(page_content=text_info['text'], metadata=metadata)]
    
    logger.info("Document",document)
    logging.info("Loading General Text Embeddings (GTE) model{}".format('thenlper/gte-large'))
    
    embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large',model_kwargs={"device": device})
    texts = process_documents(documents=document)
    
    global vector_db
    vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
    global qa

    if llm == 'HuggingFace':
        chat = llm_ops.get_hugging_face_model(
                            model_id="VMware/open-llama-7B-open-instruct",
                            API_key=API_key,
                            temperature=temperature,
                            max_tokens=max_tokens
                            )
    else:
        chat = llm_ops.get_openai_chat_model(API_key=API_key)
    
    chain_type_kwargs = {"prompt": create_prompt()}
    qa = RetrievalQA.from_chain_type(llm=chat,
                                chain_type='stuff',
                                retriever=vector_db.as_retriever(),
                                chain_type_kwargs=chain_type_kwargs,
                                return_source_documents=True
                            )
    return "Audio Processing completed ..."

def infer(question, history):
    # res = []
    # for human, ai in history[:-1]:
    #     pair = (human, ai)
    #     res.append(pair)
    
    # chat_history = res

    result = qa({"query": question})
    matching_docs_score = vector_db.similarity_search_with_score(question)
    logger.info("Matching Score :",matching_docs_score)
    return result["result"]

def bot(history):
    response = infer(history[-1][0], history)
    history[-1][1] = ""
    
    for character in response:     
        history[-1][1] += character
        time.sleep(0.05)
        yield history

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""


def loading_file():
    return "Loading..."


css="""
#col-container {max-width: 2048px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 2048px;">
    <h1>Q&A using LLAMA on Audio files</h1>
    <p style="text-align: center;">Upload a Audio file/link and  query  LLAMA-chatbot.
    <i> Tools uses State of the Art Models from  HuggingFace/OpenAI so, make sure to add your key.</i>
    </p>
</div>
"""
with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column(elem_id="col-container"):
            gr.HTML(title)
    
    with gr.Column():
        with gr.Row():
            LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='Select HuggingFace/OpenAI')
            API_key = gr.Textbox(label="Add API key", type="password",autofocus=True)
            wav_model = gr.Dropdown(['small','medium','large'],label='Select Whisper model')
    
    with gr.Group():    
        chatbot = gr.Chatbot(height=270)
    
    with gr.Row():
        question = gr.Textbox(label="Type your question !",lines=1,interactive=True)
    
    with gr.Row():
        submit_btn = gr.Button(value="Send message", variant="primary", scale = 1)
        clean_chat_btn =  gr.Button("Delete Chat")
    with gr.Column():
        with gr.Box():
            audio_file = gr.File(label="Upload Audio File ", file_types=FILE_EXT, type="file")
            with gr.Accordion(label='Advanced options', open=False):
                    max_new_tokens = gr.Slider(
                        label='Max new tokens',
                        minimum=2048,
                        maximum=MAX_NEW_TOKENS,
                        step=1,
                        value=DEFAULT_MAX_NEW_TOKENS,
                        )
                    duration = gr.Slider(label='duration in min',minimum=5,maximum = 10,step=1,value=DEFAULT_DURATION)
                    temperature = gr.Slider(
                    label='Temperature',
                    minimum=0.1,
                    maximum=4.0,
                    step=0.1,
                    value=DEFAULT_TEMPERATURE,
                    )
            with gr.Row():
                    langchain_status = gr.Textbox(label="Status", placeholder="", interactive = False)
                    load_audio = gr.Button("Upload Audio File")
    if audio_file:
        load_audio.click(loading_file, None, langchain_status, queue=False)    
        load_audio.click(audio_processor, inputs=[audio_file,API_key,wav_model,LLM_option,temperature,max_new_tokens], outputs=[langchain_status], queue=False)
    
    clean_chat_btn.click(clear_chat, [], chatbot)
    question.submit(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
    submit_btn.click(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)

demo.launch()