File size: 3,360 Bytes
894c286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/jarvis/.local/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "from transformers import ViTImageProcessor, ViTForImageClassification,FlaxViTForImageClassification\n",
    "from PIL import Image\n",
    "import requests\n",
    "from matplotlib import pyplot as plt "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['tiger cat', 'tabby, tabby cat', 'Egyptian cat'] [282 281 285]\n"
     ]
    }
   ],
   "source": [
    "url = 'http://images.cocodataset.org/val2017/000000039769.jpg'\n",
    "image = Image.open(requests.get(url, stream=True).raw)\n",
    "\n",
    "processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')\n",
    "model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')\n",
    "\n",
    "inputs = processor(images=image, return_tensors=\"pt\")\n",
    "outputs = model(**inputs)\n",
    "logits = outputs.logits\n",
    "\n",
    "logits_np = logits.detach().cpu().numpy()\n",
    "logits_args = logits_np.argsort()[0][-3:]\n",
    "\n",
    "prediction_classes = [model.config.id2label[predicted_class_idx] for predicted_class_idx in logits_args ]\n",
    "print(prediction_classes,logits_args)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'tiger cat': -0.27440035,\n",
       " 'tabby, tabby cat': 0.8215165,\n",
       " 'Egyptian cat': -0.08364794}"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "result = {}\n",
    "for i,item in enumerate(prediction_classes):\n",
    "    result[item] = logits_np[0][i]\n",
    "\n",
    "result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['tiger cat', 'tabby, tabby cat', 'Egyptian cat']"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# model predicts one of the 1000 ImageNet classes\n",
    "\n",
    "prediction_classes = [model.config.id2label[predicted_class_idx] for predicted_class_idx in logits_args ]\n",
    "\n",
    "prediction_classes\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "py_llm",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}