Spaces:
Runtime error
Runtime error
File size: 13,694 Bytes
582a7fc 854ac8d 582a7fc 854ac8d 582a7fc 854ac8d 582a7fc 854ac8d 582a7fc 854ac8d 582a7fc 351c297 582a7fc 74fc7fc 351c297 8a46e51 74fc7fc 2085f26 582a7fc 351c297 582a7fc 351c297 8a46e51 351c297 582a7fc 74fc7fc 002ac57 351c297 002ac57 351c297 582a7fc 351c297 582a7fc 351c297 582a7fc 351c297 582a7fc 351c297 8a46e51 351c297 582a7fc 351c297 582a7fc 351c297 74fc7fc 351c297 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# from flair.data import Sentence
# from flair.models import SequenceTagger
# import streamlit as st
# # load tagger
# tagger = SequenceTagger.load("flair/ner-english-large")
# # make example sentence
# text=st.text_area("Enter the text to detect it's named entities")
# sentence = Sentence(text)
# # predict NER tags
# tagger.predict(sentence)
# # print sentence
# print(sentence)
# # print predicted NER spans
# print('The following NER tags are found:')
# # iterate over entities and printx
# for entity in sentence.get_spans('ner'):
# print(entity)
# import easyocr
# import cv2
# import requests
# import re
# from PIL import Image
# import streamlit as st
# # import os
# # Load the EasyOCR reader
# reader = easyocr.Reader(['en'])
# # key=os.environ.getattribute("api_key")
# # print(key)
# API_URL = "https://api-inference.huggingface.co/models/flair/ner-english-large"
# headers = {"Authorization": st.secrets["api_key"]}
# ## Image uploading function ##
# def image_upload_and_ocr(reader):
# uploaded_file=st.file_uploader(label=':red[**please upload a busines card** :sunglasses:]',type=['jpeg','jpg','png','webp'])
# if uploaded_file is not None:
# image=Image.open(uploaded_file)
# image=image.resize((640,480))
# result2 = reader.readtext(image)
# # result2=result
# texts = [item[1] for item in result2]
# result=' '.join(texts)
# return result2,result
# def query(payload):
# response = requests.post(API_URL, headers=headers, json=payload)
# return response.json()
# def get_ner_from_transformer(output):
# data = output
# named_entities = {}
# for entity in data:
# entity_type = entity['entity_group']
# entity_text = entity['word']
# if entity_type not in named_entities:
# named_entities[entity_type] = []
# named_entities[entity_type].append(entity_text)
# # for entity_type, entities in named_entities.items():
# # print(f"{entity_type}: {', '.join(entities)}")
# return entity_type,named_entities
# ### DRAWING DETECTION FUNCTION ###
# def drawing_detection(image):
# # Draw bounding boxes around the detected text regions
# for detection in image:
# # Extract the bounding box coordinates
# points = detection[0] # List of points defining the bounding box
# x1, y1 = int(points[0][0]), int(points[0][1]) # Top-left corner
# x2, y2 = int(points[2][0]), int(points[2][1]) # Bottom-right corner
# # Draw the bounding box
# cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
# # Add the detected text
# text = detection[1]
# cv2.putText(image, text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
# st.image(image,caption='Detected text on the card ',width=710)
# return image
# st.title("_Business_ card data extractor using opencv and streamlit :sunglasses:")
# res2,res=image_upload_and_ocr(reader)
# darwing_image=drawing_detection(res2)
# output = query({
# "inputs": res,
# })
# entity_type,named_entities= get_ner_from_transformer(output)
# st.write(entity_type)
# st.write(named_entities)
import easyocr
import cv2
import requests
import re
from PIL import Image
import streamlit as st
import numpy as np
# Load the EasyOCR reader
reader = easyocr.Reader(['en'])
API_URL = "https://api-inference.huggingface.co/models/flair/ner-english-large"
headers = {"Authorization": st.secrets["api_key"]}
## Image uploading function ##
def image_upload_and_ocr(reader, uploaded_file):
if uploaded_file is not None:
image = Image.open(uploaded_file)
image = image.resize((640, 480))
image_np = np.array(image) # Convert image to NumPy array
result2 = reader.readtext(image_np)
texts = [item[1] for item in result2]
result = ' '.join(texts)
return result2, result, image
else:
return None, None, None
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def get_ner_from_transformer(output):
data = output
named_entities = {}
for entity in data:
entity_type = entity['entity_group']
entity_text = entity['word']
if entity_type not in named_entities:
named_entities[entity_type] = []
named_entities[entity_type].append(entity_text)
return entity_type, named_entities
def drawing_detection(res2, image):
cv2_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Draw bounding boxes around the detected text regions
for detection in res2:
# Extract the bounding box coordinates
points = detection[0] # List of points defining the bounding box
x1, y1 = int(points[0][0]), int(points[0][1]) # Top-left corner
x2, y2 = int(points[2][0]), int(points[2][1]) # Bottom-right corner
# Draw the bounding box
cv2.rectangle(cv2_image, (x1, y1), (x2, y2), (255, 0, 0), 1)
# Add the detected text
text = detection[1]
cv2.putText(cv2_image, text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
st.image(cv2_image, caption='Detected text on the card', width=710)
return cv2_image
# Function to extract phone numbers from text using regular expression
def extract_phone_numbers(text):
# Regular expression pattern for detecting phone numbers
PHONE_PATTERN = r'(?:ph|phone|phno)?\s*(?:[+-]?\d\s*[\(\)]*){7,}'
# Find phone numbers using regular expression
phone_numbers = re.findall(PHONE_PATTERN, text, re.IGNORECASE)
# Return the extracted phone numbers
return phone_numbers or None
# Function to extract email addresses from text using regular expression
def extract_email(text):
emails = []
# Regular expression pattern for detecting email addresses with variations
reg = r'[a-z0-9_.-]+(?:\s*@\s*)[a-z]+(?:\s*\.?\s*[a-z]{2,3})\s*'
# Find email addresses using regular expression
res = re.findall(reg, text, re.IGNORECASE)
# Print the extracted email addresses
for email in res:
emails.append(email.strip())
return emails or None
# Function to extract designations from text using regular expression
def extract_designation(text):
designations = []
# Regular expression pattern for detecting designations
designation_regex = r'\b(?:CEO|CFO|CTO|COO|CMO|CIO|President|Vice\s?President|Director|Manager|Executive\s?Director|Assistant\s?Manager|Account\s?Manager|Sales\s?Manager|Marketing\s?Manager|Product\s?Manager|Project\s?Manager|HR\s?Manager|Human\s?Resources\s?Manager|Operations\s?Manager|Business\s?Development\s?Manager|Senior\s?Manager|General\s?Manager|Team\s?Lead|Consultant|Analyst|Engineer|Architect|Designer|Developer|Programmer|Coordinator|Specialist|Supervisor|Administrator|Assistant|Associate|Partner|Founder|Owner|Principal|Expert|Technician|Officer|Representative|Agent|Accountant|Auditor|Trainer|Coach|Educator|Professor|Instructor|Researcher|Scientist|Doctor|Nurse|Therapist|Pharmacist|Attorney|Lawyer|Legal\s?Counsel|Paralegal|Advocate|Solicitor|Notary|Financial\s?Advisor|Investment\s?Advisor|Wealth\s?Manager|Broker|Realtor|Mortgage\s?Broker|Insurance\s?Agent)\b'
# Find designations using regular expression
designations = re.findall(designation_regex, text, re.IGNORECASE)
return designations or None
# Function to extract website URLs from text using regular expression
def extract_websites(text):
websites_found=[]
pattern = r'(https?://)?(www\.)?(\w+)(\.\w+)+'
websites = re.findall(pattern, text)
return ["".join(website) for website in websites] or None
# Function to extract PIN codes from text using regular expression
def extract_pin_code(text):
pin_code_pattern = r'\b\d{6}\b'
pin_code_match = re.search(pin_code_pattern, text.lower())
# Retrieve the PIN code if found
if pin_code_match:
pin_code = pin_code_match.group()
return pin_code
else:
return None
import pandas as pd
# Streamlit UI
st.title("Business Card Data Extractor using OpenCV and Streamlit")
uploaded_file = st.file_uploader(label="Please upload a business card", type=['jpeg', 'jpg', 'png', 'webp'], accept_multiple_files=False)
if uploaded_file is not None:
res2, res, image = image_upload_and_ocr(reader, uploaded_file)
if res2 is not None:
drawing_image = drawing_detection(res2, image)
try:
output = query({
"inputs": res,
})
entity_type, named_entities = get_ner_from_transformer(output)
except Exception as e:
st.error("An error occurred while processing the business card. Please try again later.")
st.error(f"Error details: {str(e)}")
extracted_data = {}
# Function to extract person's name
# Assuming the person's name is extracted by NER
names = named_entities.get("PER", [])
if names:
selected_name = st.selectbox("Select Person's Name:", [""] + names)
if selected_name:
extracted_data["Name"] = selected_name
else:
manual_name = st.text_input("Enter Person's Name manually:")
if manual_name:
extracted_data["Name"] = manual_name
# Function to extract designations
designations = extract_designation(res)
if designations is not None:
selected_designation = st.selectbox("Select Designation:", [""] + designations)
if selected_designation:
extracted_data["Designation"] = selected_designation
else:
manual_designation = st.text_input("Enter Designation manually:")
if manual_designation:
extracted_data["Designation"] = manual_designation
# Function to extract company names
# Assuming the organization names extracted by NER represent company names
company_names = named_entities.get("ORG", [])
if company_names:
selected_company_name = st.selectbox("Select Company Name:", [""] + company_names)
if selected_company_name:
extracted_data["Company Name"] = selected_company_name
else:
manual_company_name = st.text_input("Enter Company Name manually:")
if manual_company_name:
extracted_data["Company Name"] = manual_company_name
# Function to extract email addresses
emails = extract_email(res)
if emails is not None:
selected_email = st.selectbox("Select Email:", [""] + emails)
if selected_email:
extracted_data["Email"] = selected_email
else:
manual_email = st.text_input("Enter Email manually:")
if manual_email:
extracted_data["Email"] = manual_email
# Function to extract website URLs
websites = extract_websites(res)
if websites is not None:
selected_website = st.selectbox("Select Website:", [""] + websites)
if selected_website:
extracted_data["Website"] = selected_website
else:
manual_website = st.text_input("Enter Website manually:")
if manual_website:
extracted_data["Website"] = manual_website
# Function to extract phone numbers
phone_numbers = extract_phone_numbers(res)
if phone_numbers is not None:
selected_phone_number = st.selectbox("Select Phone Number:", [""] + phone_numbers)
if selected_phone_number:
extracted_data["Phone Number"] = selected_phone_number
else:
manual_phone_number = st.text_input("Enter Phone Number manually:")
if manual_phone_number:
extracted_data["Phone Number"] = manual_phone_number
# Concatenate all the text returned by the API for location
locations = named_entities.get("LOC", [])
if locations:
concatenated_location = ", ".join(locations)
selected_location = st.selectbox("Select Location:", [""] + [concatenated_location])
if selected_location:
extracted_data["Location"] = selected_location
else:
manual_location = st.text_input("Enter Location manually:")
if manual_location:
extracted_data["Location"] = manual_location
else:
manual_location = st.text_input("Enter Location manually:")
if manual_location:
extracted_data["Location"] = manual_location
# Function to extract PIN codes
pin_code = extract_pin_code(res)
if pin_code is not None:
selected_pin_code = st.selectbox("Select PIN Code:", ["", pin_code])
if selected_pin_code:
extracted_data["PIN Code"] = selected_pin_code
else:
manual_pin_code = st.text_input("Enter PIN Code manually:")
if manual_pin_code:
extracted_data["PIN Code"] = manual_pin_code
# Display extracted data
if extracted_data:
st.write("Extracted Data:")
df = pd.DataFrame([extracted_data], columns=["Name", "Designation", "Company Name", "Email", "Website", "Phone Number", "Location", "PIN Code"])
st.write(df)
|