Spaces:
Running
Running
File size: 12,548 Bytes
62c7044 c470ddc 098bb60 62c7044 375e6bf b27b717 c470ddc 375e6bf 62c7044 b27b717 62c7044 429ce41 b27b717 e9c359b 1cade3b 429ce41 c6ea0a2 62c7044 429ce41 ada4cd8 429ce41 1cade3b 429ce41 c6ea0a2 ad6d69e c6ea0a2 62c7044 c6ea0a2 84ee137 62c7044 ada4cd8 1cade3b e9c359b 1cade3b c6ea0a2 1cade3b e9c359b 1cade3b e9c359b 1cade3b c6ea0a2 1cade3b b27b717 e9c359b ada4cd8 e9c359b 1cade3b 429ce41 62c7044 f4017ee 62c7044 5680172 62c7044 375e6bf b27b717 429ce41 1cade3b 375e6bf 1cade3b 429ce41 b27b717 1cade3b b27b717 429ce41 b27b717 f94783d b27b717 429ce41 62c7044 1cade3b e9c359b 1cade3b c6ea0a2 1cade3b 62c7044 c470ddc 429ce41 b27b717 e9c359b 1cade3b 429ce41 c6ea0a2 c470ddc 62c7044 429ce41 b27b717 e9c359b 1cade3b 429ce41 c6ea0a2 2bc2f6b 62c7044 429ce41 c470ddc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import gradio as gr
import pandas as pd
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
from src.display.css_html_js import custom_css
from src.display.utils import COLS, TS_COLS, TYPES, AutoEvalColumn, fields
from src.envs import CRM_RESULTS_PATH
from src.populate import get_leaderboard_df_crm
original_df = get_leaderboard_df_crm(CRM_RESULTS_PATH, COLS, TS_COLS)
leaderboard_df = original_df.copy()
# leaderboard_df = leaderboard_df.style.format({"accuracy_metric_average": "{0:.2f}"})
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
llm_query: list,
llm_provider_query: list,
accuracy_method_query: str,
accuracy_threshold_query: str,
use_case_area_query: list,
use_case_query: list,
use_case_type_query: list,
metric_area_query: list,
):
filtered_df = filter_llm_func(hidden_df, llm_query)
filtered_df = filter_llm_provider_func(filtered_df, llm_provider_query)
filtered_df = filter_accuracy_method_func(filtered_df, accuracy_method_query)
filtered_df["Accuracy Threshold"] = filter_accuracy_threshold_func(filtered_df, accuracy_threshold_query)
filtered_df = filtered_df[filtered_df["Accuracy Threshold"]]
filtered_df["Use Case Area"] = filtered_df["Use Case Name"].apply(lambda x: x.split(": ")[0])
filtered_df = filter_use_case_area_func(filtered_df, use_case_area_query)
filtered_df = filter_use_case_func(filtered_df, use_case_query)
filtered_df = filter_use_case_type_func(filtered_df, use_case_type_query)
# Filtering by metric area
metric_area_maps = {
"Cost": ["Cost Band"],
"Accuracy": ["Accuracy", "Instruction Following", "Conciseness", "Completeness", "Factuality"],
"Speed (Latency)": ["Response Time (Sec)", "Mean Output Tokens"],
"Trust & Safety": ["Trust & Safety", "Safety", "Privacy", "Truthfulness", "CRM Fairness"],
}
all_metric_cols = []
for area in metric_area_maps:
all_metric_cols = all_metric_cols + metric_area_maps[area]
columns_to_keep = list(set(columns).difference(set(all_metric_cols)))
for area in metric_area_query:
columns_to_keep = columns_to_keep + metric_area_maps[area]
columns = list(set(columns).intersection(set(columns_to_keep)))
df = select_columns(filtered_df, columns)
return df.style.map(highlight_cost_band_low, props="background-color: #b3d5a4")
# def highlight_cols(x):
# df = x.copy()
# df.loc[:, :] = "color: black"
# df.loc[, ["Accuracy"]] = "background-color: #b3d5a4"
# return df
def highlight_cost_band_low(s, props=""):
return props if s == "Low" else None
def init_leaderboard_df(
leaderboard_df: pd.DataFrame,
columns: list,
llm_query: list,
llm_provider_query: list,
accuracy_method_query: str,
accuracy_threshold_query: str,
use_case_area_query: list,
use_case_query: list,
use_case_type_query: list,
metric_area_query: list,
):
# Applying the style function
# return df.style.apply(highlight_cols, axis=None)
return update_table(
leaderboard_df,
columns,
llm_query,
llm_provider_query,
accuracy_method_query,
accuracy_threshold_query,
use_case_area_query,
use_case_query,
use_case_type_query,
metric_area_query,
)
def filter_accuracy_method_func(df: pd.DataFrame, accuracy_method_query: str) -> pd.DataFrame:
return df[df["Accuracy Method"] == accuracy_method_query]
def filter_accuracy_threshold_func(df: pd.DataFrame, accuracy_threshold_query: str) -> pd.DataFrame:
accuracy_cols = ["Instruction Following", "Conciseness", "Completeness", "Accuracy"]
return (df.loc[:, accuracy_cols] >= float(accuracy_threshold_query)).all(axis=1)
def filter_use_case_area_func(df: pd.DataFrame, use_case_area_query: list) -> pd.DataFrame:
return df[
df["Use Case Area"].apply(
lambda x: len(set([_.strip() for _ in x.split("&")]).intersection(use_case_area_query))
)
> 0
]
def filter_use_case_func(df: pd.DataFrame, use_case_query: list) -> pd.DataFrame:
return df[df["Use Case Name"].isin(use_case_query)]
def filter_use_case_type_func(df: pd.DataFrame, use_case_type_query: list) -> pd.DataFrame:
return df[df["Use Case Type"].isin(use_case_type_query)]
def filter_llm_func(df: pd.DataFrame, llm_query: list) -> pd.DataFrame:
return df[df["Model Name"].isin(llm_query)]
def filter_llm_provider_func(df: pd.DataFrame, llm_provider_query: list) -> pd.DataFrame:
return df[df["LLM Provider"].isin(llm_provider_query)]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
# always_here_cols = [
# AutoEvalColumn.model.name,
# ]
model_provider_col = [AutoEvalColumn.model_provider.name] if AutoEvalColumn.model_provider.name in columns else []
# We use COLS to maintain sortingx
filtered_df = df[
(
[AutoEvalColumn.model.name]
+ model_provider_col
+ [AutoEvalColumn.use_case_name.name]
+ [c for c in COLS if c in df.columns and c in columns and c != AutoEvalColumn.model_provider.name]
)
]
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Row():
with gr.Column():
filter_llm = gr.CheckboxGroup(
choices=list(original_df["Model Name"].unique()),
value=list(original_df["Model Name"].unique()),
label="Model Name",
info="",
interactive=True,
)
with gr.Column():
with gr.Row():
filter_llm_provider = gr.CheckboxGroup(
choices=list(original_df["LLM Provider"].unique()),
value=list(original_df["LLM Provider"].unique()),
label="LLM Provider",
info="",
interactive=True,
)
with gr.Row():
filter_metric_area = gr.CheckboxGroup(
choices=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"],
value=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"],
label="Metric Area",
info="",
interactive=True,
)
with gr.Row():
filter_use_case = gr.CheckboxGroup(
choices=list(original_df["Use Case Name"].unique()),
value=list(original_df["Use Case Name"].unique()),
label="Use Case",
info="",
# multiselect=True,
interactive=True,
)
with gr.Row():
with gr.Column():
filter_use_case_area = gr.CheckboxGroup(
choices=["Service", "Sales"],
value=["Service", "Sales"],
label="Use Case Area",
info="",
interactive=True,
)
with gr.Column():
filter_use_case_type = gr.CheckboxGroup(
choices=["Summary", "Generation"],
value=["Summary", "Generation"],
label="Use Case Type",
info="",
interactive=True,
)
# with gr.Column():
# filter_use_case = gr.Dropdown(
# choices=list(original_df["Use Case Name"].unique()),
# value=list(original_df["Use Case Name"].unique()),
# label="Use Case",
# info="",
# multiselect=True,
# interactive=True,
# )
with gr.Column():
filter_accuracy_method = gr.Radio(
choices=["Manual", "Auto"],
value="Manual",
label="Accuracy Method",
info="",
interactive=True,
)
with gr.Column():
filter_accuracy_threshold = gr.Number(
value="0",
label="Accuracy Threshold",
info="Range: 0.0 to 4.0",
interactive=True,
)
leaderboard_table = gr.components.Dataframe(
# value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
value=init_leaderboard_df(
leaderboard_df,
shown_columns.value,
filter_llm.value,
filter_llm_provider.value,
filter_accuracy_method.value,
filter_accuracy_threshold.value,
filter_use_case_area.value,
filter_use_case.value,
filter_use_case_type.value,
filter_metric_area.value,
),
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
for selector in [
shown_columns,
filter_llm,
filter_llm_provider,
filter_accuracy_method,
filter_accuracy_threshold,
filter_use_case_area,
filter_use_case,
filter_use_case_type,
filter_metric_area,
]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_llm,
filter_llm_provider,
filter_accuracy_method,
filter_accuracy_threshold,
filter_use_case_area,
filter_use_case,
filter_use_case_type,
filter_metric_area,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|