Spaces:
Runtime error
Runtime error
File size: 13,179 Bytes
d77a781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class SdeVeOutput(BaseOutput):
"""
Output class for the ScoreSdeVeScheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps.
"""
prev_sample: torch.FloatTensor
prev_sample_mean: torch.FloatTensor
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
"""
The variance exploding stochastic differential equation (SDE) scheduler.
For more information, see the original paper: https://arxiv.org/abs/2011.13456
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
[`~ConfigMixin.from_config`] functios.
Args:
snr (`float`):
coefficient weighting the step from the model_output sample (from the network) to the random noise.
sigma_min (`float`):
initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
distribution of the data.
sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model.
sampling_eps (`float`): the end value of sampling, where timesteps decrease progessively from 1 to
epsilon.
correct_steps (`int`): number of correction steps performed on a produced sample.
tensor_format (`str`): "np" or "pt" for the expected format of samples passed to the Scheduler.
"""
@register_to_config
def __init__(
self,
num_train_timesteps: int = 2000,
snr: float = 0.15,
sigma_min: float = 0.01,
sigma_max: float = 1348.0,
sampling_eps: float = 1e-5,
correct_steps: int = 1,
tensor_format: str = "pt",
):
# setable values
self.timesteps = None
self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
self.tensor_format = tensor_format
self.set_format(tensor_format=tensor_format)
def set_timesteps(self, num_inference_steps: int, sampling_eps: float = None):
"""
Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).
"""
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
tensor_format = getattr(self, "tensor_format", "pt")
if tensor_format == "np":
self.timesteps = np.linspace(1, sampling_eps, num_inference_steps)
elif tensor_format == "pt":
self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps)
else:
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
def set_sigmas(
self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
):
"""
Sets the noise scales used for the diffusion chain. Supporting function to be run before inference.
The sigmas control the weight of the `drift` and `diffusion` components of sample update.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
sigma_min (`float`, optional):
initial noise scale value (overrides value given at Scheduler instantiation).
sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation).
sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).
"""
sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(num_inference_steps, sampling_eps)
tensor_format = getattr(self, "tensor_format", "pt")
if tensor_format == "np":
self.discrete_sigmas = np.exp(np.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps))
self.sigmas = np.array([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
elif tensor_format == "pt":
self.discrete_sigmas = torch.exp(torch.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps))
self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
else:
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
def get_adjacent_sigma(self, timesteps, t):
tensor_format = getattr(self, "tensor_format", "pt")
if tensor_format == "np":
return np.where(timesteps == 0, np.zeros_like(t), self.discrete_sigmas[timesteps - 1])
elif tensor_format == "pt":
return torch.where(
timesteps == 0,
torch.zeros_like(t.to(timesteps.device)),
self.discrete_sigmas[timesteps - 1].to(timesteps.device),
)
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
def set_seed(self, seed):
warnings.warn(
"The method `set_seed` is deprecated and will be removed in version `0.4.0`. Please consider passing a"
" generator instead.",
DeprecationWarning,
)
tensor_format = getattr(self, "tensor_format", "pt")
if tensor_format == "np":
np.random.seed(seed)
elif tensor_format == "pt":
torch.manual_seed(seed)
else:
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
def step_pred(
self,
model_output: Union[torch.FloatTensor, np.ndarray],
timestep: int,
sample: Union[torch.FloatTensor, np.ndarray],
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
**kwargs,
) -> Union[SdeVeOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor` or `np.ndarray`):
current instance of sample being created by diffusion process.
generator: random number generator.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
if "seed" in kwargs and kwargs["seed"] is not None:
self.set_seed(kwargs["seed"])
if self.timesteps is None:
raise ValueError(
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
)
timestep = timestep * torch.ones(
sample.shape[0], device=sample.device
) # torch.repeat_interleave(timestep, sample.shape[0])
timesteps = (timestep * (len(self.timesteps) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
timesteps = timesteps.to(self.discrete_sigmas.device)
sigma = self.discrete_sigmas[timesteps].to(sample.device)
adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
drift = self.zeros_like(sample)
diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
drift = drift - diffusion[:, None, None, None] ** 2 * model_output
# equation 6: sample noise for the diffusion term of
noise = self.randn_like(sample, generator=generator)
prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
prev_sample = prev_sample_mean + diffusion[:, None, None, None] * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
def step_correct(
self,
model_output: Union[torch.FloatTensor, np.ndarray],
sample: Union[torch.FloatTensor, np.ndarray],
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
**kwargs,
) -> Union[SchedulerOutput, Tuple]:
"""
Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
after making the prediction for the previous timestep.
Args:
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
sample (`torch.FloatTensor` or `np.ndarray`):
current instance of sample being created by diffusion process.
generator: random number generator.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
if "seed" in kwargs and kwargs["seed"] is not None:
self.set_seed(kwargs["seed"])
if self.timesteps is None:
raise ValueError(
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
)
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
noise = self.randn_like(sample, generator=generator)
# compute step size from the model_output, the noise, and the snr
grad_norm = self.norm(model_output)
noise_norm = self.norm(noise)
step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
prev_sample_mean = sample + step_size[:, None, None, None] * model_output
prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5)[:, None, None, None] * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def __len__(self):
return self.config.num_train_timesteps
|