Spaces:
Runtime error
Runtime error
File size: 3,989 Bytes
d081411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# Generated 2023-08-03 from:
# /home/salah/new_tunisian_model/hparams/train_tunisian_withwavlm.yaml
# yamllint disable
# ################################
# Model: wav2vec2 + DNN + CTC
# Augmentation: SpecAugment
# Authors: Titouan Parcollet 2021
# ################################
seed: 1994
__set_seed: !!python/object/apply:torch.manual_seed [1234]
output_folder: results/non_semi_final_stac
wer_file: !ref <output_folder>/wer.txt
save_folder: !ref <output_folder>/save
train_log: !ref <output_folder>/train_log.txt
# Data files
data_folder: junk # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr
train_tsv_file: junk/train.tsv # Standard CommonVoice .tsv files
dev_tsv_file: junk/dev.tsv # Standard CommonVoice .tsv files
test_tsv_file: junk/test.tsv # Standard CommonVoice .tsv files
accented_letters: true
csv_folder: /gpfsscratch/rech/nou/uzn19yk/switched_data/extended_clean/
train_csv: !ref <csv_folder>/train.csv
valid_csv: !ref <csv_folder>/dev.csv
test_csv:
- all_tests/cs_test.csv
- all_tests/stac_test.csv
# We remove utterance slonger than 10s in the train/dev/test sets as
# longer sentences certainly correspond to "open microphones".
avoid_if_longer_than: 13.0
avoid_if_shorter_than: 0.5
# Training parameters
number_of_epochs: 20
lr: 0.0002
lr_weights: 0.01
sorting: ascending
auto_mix_prec: False
sample_rate: 16000
language_modelling: True
ngram_lm_path: arpas/pluslanguages_everything.arpa
# With data_parallel batch_size is split into N jobs
# With DDP batch_size is multiplied by N jobs
# Must be 3 per GPU to fit 32GB of VRAM
batch_size: 3
test_batch_size: 4
# Dataloader options
dataloader_options:
batch_size: !ref <batch_size>
num_workers: 6
test_dataloader_options:
batch_size: !ref <test_batch_size>
num_workers: 6
# Model parameters
activation: !name:torch.nn.Sigmoid
dnn_layers: 1
dnn_neurons: 768
freeze_encoder: True
# Outputs
output_neurons: 76 # BPE size, index(blank/eos/bos) = 0
# Functions and classes
#
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
limit: !ref <number_of_epochs>
encoder_dim: 3217
enc: !new:speechbrain.nnet.RNN.LSTM
input_shape: [Null, Null, !ref <encoder_dim>]
num_layers: 2
bidirectional: True
dropout: 0.2
hidden_size: 1024
ctc_lin: !new:speechbrain.nnet.linear.Linear
input_size: 2048
n_neurons: !ref <output_neurons>
log_softmax: !new:speechbrain.nnet.activations.Softmax
apply_log: True
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
blank_index: !ref <blank_index>
modules:
enc: !ref <enc>
ctc_lin: !ref <ctc_lin>
model: !new:torch.nn.ModuleList
- [!ref <enc>, !ref <ctc_lin>]
model_opt_class: !name:torch.optim.Adam
lr: !ref <lr>
weights_opt_class: !name:torch.optim.Adam
lr: !ref <lr_weights>
lr_annealing_model: !new:speechbrain.nnet.schedulers.NewBobScheduler
initial_value: !ref <lr>
improvement_threshold: 0.0025
annealing_factor: 0.8
patient: 0
lr_annealing_weights: !new:speechbrain.nnet.schedulers.NewBobScheduler
initial_value: !ref <lr_weights>
improvement_threshold: 0.0025
annealing_factor: 0.9
patient: 0
label_encoder: !new:speechbrain.dataio.encoder.CTCTextEncoder
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: !ref <save_folder>
recoverables:
model: !ref <model>
scheduler_model: !ref <lr_annealing_model>
scheduler_encoder: !ref <lr_annealing_weights>
counter: !ref <epoch_counter>
tokenizer: !ref <label_encoder>
blank_index: 0
unk_index: 1
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: !ref <train_log>
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
split_tokens: True
|