File size: 6,198 Bytes
d081411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# ################################
# Model: wav2vec2 + DNN + CTC
# Augmentation: SpecAugment
# Authors: Titouan Parcollet 2021
# ################################

# Seed needs to be set at top of yaml, before objects with parameters are made
seed: 1234
__set_seed: !!python/object/apply:torch.manual_seed [!ref <seed>]
output_folder:  TunisianASR/results/14epoch_tunisian/1234/
wer_file: !ref <output_folder>/wer.txt
save_folder: !ref <output_folder>/save
train_log: !ref <output_folder>/train_log.txt

# URL for the biggest LeBenchmark wav2vec french.
wav2vec2_folder: !ref <save_folder>/wav2vec2_checkpoint

# Data files
data_folder: /gpfsscratch/rech/nou/uzn19yk/tunisian_junk  # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr
train_tsv_file: !ref <data_folder>/train.tsv  # Standard CommonVoice .tsv files
dev_tsv_file: !ref <data_folder>/dev.tsv  # Standard CommonVoice .tsv files
test_tsv_file: !ref <data_folder>/test.tsv  # Standard CommonVoice .tsv files
accented_letters: True
language: fr # use 'it' for Italian, 'rw' for Kinyarwanda, 'en' for english
train_csv: /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/good_final/train.csv
valid_csv: /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/good_final/dev.csv
test_csv: 
    - /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/full_annotation_test.csv
    - /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/good_final/iwslt_test.csv
    - /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/good_final/taric_test.csv

skip_prep: True # Skip data preparation

use_language_modelling: True
ngram_lm_path: arpas/outdomain.arpa

# We remove utterance slonger than 10s in the train/dev/test sets as
# longer sentences certainly correspond to "open microphones".
avoid_if_longer_than: 10.0
avoid_if_shorter_than: 1.2


# Training parameters
number_of_epochs: 14
lr: 1.0
lr_wav2vec: 0.0001
sorting: ascending
auto_mix_prec: False
sample_rate: 16000
ckpt_interval_minutes: 30 # save checkpoint every N min

# With data_parallel batch_size is split into N jobs
# With DDP batch_size is multiplied by N jobs
# Must be 6 per GPU to fit 16GB of VRAM
batch_size: 10
test_batch_size: 4

dataloader_options:
    batch_size: !ref <batch_size>
    num_workers: 6
test_dataloader_options:
    batch_size: !ref <test_batch_size>
    num_workers: 6

# BPE parameters
token_type: char  # ["unigram", "bpe", "char"]
character_coverage: 1.0

# Model parameters
# activation: !name:torch.nn.LeakyReLU
wav2vec_output_dim: 1024
dnn_neurons: 1024
freeze_wav2vec: False
freeze_feature_extractor: True
dropout: 0.15
warmup_steps: 500 # The wav2vec 2 model isn't updated for this amount of steps

# Outputs
output_neurons: 40  # BPE size, index(blank/eos/bos) = 0

# Decoding parameters
# Be sure that the bos and eos index match with the BPEs ones
blank_index: 0
unk_index: 1

#
# Functions and classes
#
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
    limit: !ref <number_of_epochs>

augmentation: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
    sample_rate: !ref <sample_rate>
    speeds: [95, 100, 105]

enc: !new:speechbrain.nnet.containers.Sequential
    input_shape: [null, null, !ref <wav2vec_output_dim>]
    linear1: !name:speechbrain.nnet.linear.Linear
        n_neurons: !ref <dnn_neurons>
        bias: True
    bn1: !name:speechbrain.nnet.normalization.BatchNorm1d
    activation: !new:torch.nn.LeakyReLU
    drop: !new:torch.nn.Dropout
        p: !ref <dropout>
    linear2: !name:speechbrain.nnet.linear.Linear
        n_neurons: !ref <dnn_neurons>
        bias: True
    bn2: !name:speechbrain.nnet.normalization.BatchNorm1d
    activation2: !new:torch.nn.LeakyReLU
    drop2: !new:torch.nn.Dropout
        p: !ref <dropout>
    linear3: !name:speechbrain.nnet.linear.Linear
        n_neurons: !ref <dnn_neurons>
        bias: True
    bn3: !name:speechbrain.nnet.normalization.BatchNorm1d
    activation3: !new:torch.nn.LeakyReLU

wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
    source: wavlm-large/
    output_norm: False
    freeze: !ref <freeze_wav2vec>
    freeze_feature_extractor: !ref <freeze_feature_extractor>
    save_path: !ref <wav2vec2_folder>

#####
# Uncomment this block if you prefer to use a Fairseq pretrained model instead
# of a HuggingFace one. Here, we provide an URL that is obtained from the
# Fairseq github for the multilingual XLSR.
#
#wav2vec2_url: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr_53_56k.pt
#wav2vec2: !new:speechbrain.lobes.models.fairseq_wav2vec.FairseqWav2Vec2
#    pretrained_path: !ref <wav2vec2_url>
#    output_norm: True
#    freeze: False
#    save_path: !ref <save_folder>/wav2vec2_checkpoint/model.pt
#####


ctc_lin: !new:speechbrain.nnet.linear.Linear
    input_size: !ref <dnn_neurons>
    n_neurons: !ref <output_neurons>

log_softmax: !new:speechbrain.nnet.activations.Softmax
    apply_log: True

ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
    blank_index: !ref <blank_index>

modules:
    wav2vec2: !ref <wav2vec2>
    enc: !ref <enc>
    ctc_lin: !ref <ctc_lin>

model: !new:torch.nn.ModuleList
    - [!ref <enc>, !ref <ctc_lin>]

model_opt_class: !name:torch.optim.Adadelta
    lr: !ref <lr>
    rho: 0.95
    eps: 1.e-8

wav2vec_opt_class: !name:torch.optim.Adam
    lr: !ref <lr_wav2vec>

lr_annealing_model: !new:speechbrain.nnet.schedulers.NewBobScheduler
    initial_value: !ref <lr>
    improvement_threshold: 0.0025
    annealing_factor: 0.8
    patient: 0

lr_annealing_wav2vec: !new:speechbrain.nnet.schedulers.NewBobScheduler
    initial_value: !ref <lr_wav2vec>
    improvement_threshold: 0.0025
    annealing_factor: 0.9
    patient: 0

checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
    checkpoints_dir: !ref <save_folder>
    recoverables:
        wav2vec2: !ref <wav2vec2>
        model: !ref <model>
        scheduler_model: !ref <lr_annealing_model>
        scheduler_wav2vec: !ref <lr_annealing_wav2vec>
        counter: !ref <epoch_counter>

train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
    save_file: !ref <train_log>

error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats

cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
    split_tokens: True