Spaces:
Sleeping
Sleeping
File size: 1,508 Bytes
f52d6eb 5f11d4b 62efdbd f52d6eb 7b1c7e8 f52d6eb 0fc40c3 f52d6eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, logging
checkpoint = "Salesforce/codegen-350M-mono"
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(checkpoint, cache_dir="models/", trust_remote_code=True, revision="main")
def code_gen(text, max_tokens, temp, top_p, rep_penality):
logging.set_verbosity(logging.CRITICAL)
pipe = pipeline(
model=checkpoint,
max_new_tokens=max_tokens,
temperature=temp,
top_p=top_p,
device= "cuda" if torch.cuda.is_available() else "cpu",
repetition_penalty=rep_penality
)
response = pipe(text)
print(response)
return response[0]['generated_text']
Inferece = gr.Interface(
fn=code_gen,
inputs=[
gr.components.Textbox(label="Enter your request, and the AI will generate the code for you."),
gr.components.Slider(minimum=128, maximum=1024, step=128, value=512, label="Choose Max Token Size"),
gr.components.Slider(minimum=0.1, maximum=1, step=0.05, value=0.65, label="Choose the model Temperature"),
gr.components.Slider(minimum=0.1, maximum=1.25, step=0.05, value=0.9, label="Choose top_p"),
gr.components.Slider(minimum=0.1, maximum=2, step=0.1, value=1.15, label="Choose repetition_penalty")
],
outputs="text",
title="AI Code Gen",
live=False
)
Inferece.queue(concurrency_count=1)
Inferece.launch() |