File size: 5,749 Bytes
ff14903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# coding=utf-8
# Copyright 2023 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This script includes codes copied directly from https://huggingface.co/spaces/TIGER-Lab/Mantis

""" Llava model configuration"""


# from ...configuration_utils import PretrainedConfig
# from ...utils import logging
# from ..auto import CONFIG_MAPPING
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers.models.auto import CONFIG_MAPPING


logger = logging.get_logger(__name__)

LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "llava-hf/llava-v1.5-7b": "https://huggingface.co/llava-hf/llava-v1.5-7b/resolve/main/config.json",
}


class LlavaConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`]. It is used to instantiate an
    Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Llava-9B.

    e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vision_config (`LlavaVisionConfig`,  *optional*):
            Custom vision config or dict
        text_config (`Union[AutoConfig, dict]`, *optional*):
            The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
        ignore_index (`int`, *optional*, defaults to -100):
            The ignore index for the loss function.
        image_token_index (`int`, *optional*, defaults to 32000):
            The image token index to encode the image prompt.
        projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
            The activation function used by the multimodal projector.
        vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
            The feature selection strategy used to select the vision feature from the CLIP backbone.
        vision_feature_layer (`int`, *optional*, defaults to -2):
            The index of the layer to select the vision feature.
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Llava model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`~LlavaForConditionalGeneration`]

    Example:

    ```python
    >>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig

    >>> # Initializing a CLIP-vision config
    >>> vision_config = CLIPVisionConfig()

    >>> # Initializing a Llama config
    >>> text_config = LlamaConfig()

    >>> # Initializing a Llava llava-1.5-7b style configuration
    >>> configuration = LlavaConfig(vision_config, text_config)

    >>> # Initializing a model from the llava-1.5-7b style configuration
    >>> model = LlavaForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "llava"
    is_composition = False

    def __init__(
        self,
        vision_config=None,
        text_config=None,
        ignore_index=-100,
        image_token_index=32000,
        projector_hidden_act="gelu",
        vision_feature_select_strategy="default",
        vision_feature_layer=-2,
        vocab_size=32000,
        **kwargs,
    ):
        self.ignore_index = ignore_index
        self.image_token_index = image_token_index
        self.projector_hidden_act = projector_hidden_act
        self.vision_feature_select_strategy = vision_feature_select_strategy
        self.vision_feature_layer = vision_feature_layer
        self.vocab_size = vocab_size

        self.vision_config = vision_config

        if isinstance(self.vision_config, dict):
            vision_config["model_type"] = (
                vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
            )
            self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
        elif vision_config is None:
            self.vision_config = CONFIG_MAPPING["clip_vision_model"](
                intermediate_size=4096,
                hidden_size=1024,
                patch_size=14,
                image_size=336,
                num_hidden_layers=24,
                num_attention_heads=16,
                vocab_size=32000,
                projection_dim=768,
            )
        self.vocab_size = self.vocab_size

        self.text_config = text_config

        if isinstance(self.text_config, dict):
            text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
            self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
            self.vocab_size = self.text_config.vocab_size
        elif text_config is None:
            self.text_config = CONFIG_MAPPING["llama"]()

        super().__init__(**kwargs)