Spaces:
Sleeping
Sleeping
File size: 12,116 Bytes
125809c 792da40 125809c 45ee4ac 125809c 792da40 125809c 3d84af1 125809c 3d84af1 125809c 3d84af1 125809c 3d84af1 125809c 6f363a2 7b0cd17 6f363a2 7b0cd17 125809c 6f363a2 125809c 6f363a2 3d84af1 6f363a2 3d84af1 6f363a2 2836de6 6f363a2 2836de6 2b51aaa 2836de6 2b51aaa 7b0cd17 2b51aaa 7b0cd17 2b51aaa 7b0cd17 2b51aaa 2836de6 2b51aaa 6f363a2 bf95d6f 6f363a2 895289d 6f363a2 895289d 6f363a2 895289d 6f363a2 895289d 17793fe 895289d 6f363a2 895289d 34b4eab 6f363a2 895289d 6f363a2 17793fe 895289d 6f363a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# import gradio as gr
# import os
# HF_TOKEN = os.getenv('HW_Token')
# hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "save_audio")
# import gradio as gr
# import os
# class TextFileReader:
# def __init__(self):
# self.lines = []
# self.current_index = 0
# def read_lines(self, file):
# self.lines = file.decode('utf-8').splitlines()
# self.current_index = 0
# return self.get_current_line()
# def get_current_line(self):
# if 0 <= self.current_index < len(self.lines):
# return self.lines[self.current_index]
# else:
# return "End of file reached."
# def forward_line(self):
# self.current_index = min(self.current_index + 1, len(self.lines) - 1)
# return self.get_current_line()
# def backward_line(self):
# self.current_index = max(self.current_index - 1, 0)
# return self.get_current_line()
# reader = TextFileReader()
# # Define a function to save the text lines to a file
# def save_text_lines(file):
# lines = reader.read_lines(file)
# with open("text_lines.txt", "w") as f:
# f.write("\n".join(reader.lines))
# return lines
# # Define a function to save the audio file and corresponding text
# def save_audio_text(audio, text):
# if not os.path.exists("recordings"):
# os.makedirs("/recordings")
# # Debugging to print out the structure of the audio variable
# print("Received audio data:", audio)
# # Check if audio is a dictionary and contains 'data'
# if isinstance(audio, dict) and 'data' in audio:
# audio_data = audio['data']
# audio_path = f"/recordings/line_{reader.current_index}.wav"
# text_path = f"/recordings/line_{reader.current_index}.txt"
# with open(audio_path, "wb") as f:
# f.write(audio_data)
# with open(text_path, "w") as f:
# f.write(text)
# # Move to the next line after saving
# next_line = reader.forward_line()
# return next_line
# else:
# return "Audio data is not in the expected format."
# # Define the Gradio interface
# with gr.Blocks() as demo:
# with gr.Row():
# file_upload = gr.File(label="Upload a text file", type="binary")
# generate_button = gr.Button("Generate Lines")
# current_line = gr.Textbox(label="Current Line")
# def update_output(file):
# lines = reader.read_lines(file)
# save_text_lines(file) # Save the text lines to a file
# return lines
# generate_button.click(fn=update_output, inputs=file_upload, outputs=current_line)
# with gr.Row():
# audio_record = gr.Audio(sources=["microphone","upload"], type="filepath")
# save_button = gr.Button("Save Audio and Next Line")
# save_button.click(fn=save_audio_text, inputs=[audio_record, current_line], outputs=current_line)
# demo.launch()
# import gradio as gr
# def calculator(num1, operation, num2):
# if operation == "add":
# return num1 + num2
# elif operation == "subtract":
# return num1 - num2
# elif operation == "multiply":
# return num1 * num2
# elif operation == "divide":
# return num1 / num2
# iface = gr.Interface(
# calculator,
# ["number", gr.Radio(["add", "subtract", "multiply", "divide"]), "number"],
# "number",
# allow_flagging="manual",
# flagging_options=["correct", "wrong"]
# )
# iface.launch()
# import os
# HF_TOKEN = os.getenv('HF_TOKEN')
# hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced")
# iface = gr.Interface(
# calculator,
# ["number", gr.Radio(["add", "subtract", "multiply", "divide"]), "number"],
# "number",
# description="Check out the crowd-sourced dataset at: [https://huggingface.co/Sajjo/crowdsourced](https://huggingface.co/Sajjo/crowdsourced)",
# allow_flagging="manual",
# flagging_options=["wrong sign", "off by one", "other"],
# flagging_callback=hf_writer
# )
# iface.launch()
# import numpy as np
# import gradio as gr
# def sepia(input_img, strength):
# sepia_filter = strength * np.array(
# [[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]]
# ) + (1-strength) * np.identity(3)
# sepia_img = input_img.dot(sepia_filter.T)
# sepia_img /= sepia_img.max()
# return sepia_img
# callback = gr.CSVLogger()
# with gr.Blocks() as demo:
# with gr.Row():
# with gr.Column():
# img_input = gr.Image()
# strength = gr.Slider(0, 1, 0.5)
# img_output = gr.Image()
# with gr.Row():
# btn = gr.Button("Flag")
# # This needs to be called at some point prior to the first call to callback.flag()
# callback.setup([img_input, strength, img_output], "flagged_data_points")
# img_input.change(sepia, [img_input, strength], img_output)
# strength.change(sepia, [img_input, strength], img_output)
# # We can choose which components to flag -- in this case, we'll flag all of them
# btn.click(lambda *args: callback.flag(args), [img_input, strength, img_output], None, preprocess=False)
# demo.launch()
# import gradio as gr
# import os
# import wave
# import tempfile
# import numpy as np
# # Global variables to store file and line index
# file_index = 0
# line_index = 0
# lines = []
# # Hugging Face token and dataset saver
# HF_TOKEN = os.getenv('HF_TOKEN')
# hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-calculator-demo")
# # Function to read lines from a file
# def read_lines_from_file(file_path):
# global lines
# with open(file_path, 'r') as file:
# lines = file.readlines()
# # Function to save audio to a WAV file
# def save_audio_to_file(audio):
# sample_rate, data = audio # audio is a tuple (sample_rate, data)
# # Save the audio data as a WAV file in a temporary location
# with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
# with wave.open(tmp_file.name, 'wb') as wav_file:
# wav_file.setnchannels(1) # Mono audio
# wav_file.setsampwidth(2) # 2 bytes per sample (16-bit PCM)
# wav_file.setframerate(sample_rate)
# wav_file.writeframes(data.tobytes())
# # Return the path to the saved WAV file
# return tmp_file.name
# # Function to save data to the Hugging Face dataset
# def save_to_hf_dataset(text, audio_path):
# with open(audio_path, "rb") as f:
# audio_data = f.read()
# hf_writer.save({"text": text, "audio": audio_data})
# # Gradio interface function
# def audio_capture_interface():
# global file_index, line_index, lines
# # Initial file to read
# files = os.listdir('./audio_samples')
# read_lines_from_file(os.path.join('./audio_samples', files[file_index]))
# # Define the interface components
# audio_input = gr.Audio(source="microphone", type="numpy", label="Speak and click submit")
# output_text = gr.Textbox(label="Status", placeholder="Status will appear here")
# # Function to capture and process the audio input
# def process_audio(audio):
# global line_index, lines
# try:
# text_line = lines[line_index].strip()
# file_path = save_audio_to_file(audio)
# save_to_hf_dataset(text_line, file_path)
# return f"Audio saved to {file_path} and uploaded to Hugging Face Dataset."
# except Exception as e:
# return f"Error saving audio: {str(e)}"
# # Function to handle navigation buttons
# def navigate_lines(button):
# global line_index, lines
# if button == 'forward':
# line_index = min(line_index + 1, len(lines) - 1)
# elif button == 'previous':
# line_index = max(line_index - 1, 0)
# output_text.value = lines[line_index]
# # Create the Gradio interface
# with gr.Blocks() as iface:
# with gr.Row():
# gr.Textbox(label="Text", value=lines[line_index], interactive=False)
# with gr.Row():
# audio_input.render()
# with gr.Row():
# gr.Button("Previous").click(lambda: navigate_lines('previous'), outputs=output_text)
# gr.Button("Forward").click(lambda: navigate_lines('forward'), outputs=output_text)
# gr.Button("Submit").click(process_audio, inputs=audio_input, outputs=output_text)
# return iface
# # Launch the interface
# iface = audio_capture_interface()
# iface.launch()
import gradio as gr
import os
import wave
import tempfile
import numpy as np
# Global variables to store line index and lines
line_index = 0
lines = []
# Hugging Face token and dataset saver
HF_TOKEN = os.getenv('HF_TOKEN')
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-calculator-demo")
# Function to read lines from a file
def read_lines_from_file(file_path):
global lines, line_index
with open(file_path, 'r') as file:
lines = file.readlines()
line_index = 0 # Reset line index when a new file is loaded
return lines[line_index].strip() if lines else "No lines found in the file."
# Function to save audio to a WAV file
def save_audio_to_file(audio):
sample_rate, data = audio # audio is a tuple (sample_rate, data)
# Save the audio data as a WAV file in a temporary location
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
with wave.open(tmp_file.name, 'wb') as wav_file:
wav_file.setnchannels(1) # Mono audio
wav_file.setsampwidth(2) # 2 bytes per sample (16-bit PCM)
wav_file.setframerate(sample_rate)
wav_file.writeframes(data.tobytes())
# Return the path to the saved WAV file
return tmp_file.name
# Function to save data to the Hugging Face dataset
def save_to_hf_dataset(text, audio_path):
with open(audio_path, "rb") as f:
audio_data = f.read()
hf_writer.save({"text": text, "audio": audio_data})
# Function to capture and process the audio input
def process_audio(audio):
global line_index, lines
try:
text_line = lines[line_index].strip()
file_path = save_audio_to_file(audio)
save_to_hf_dataset(text_line, file_path)
return f"Audio saved to {file_path} and uploaded to Hugging Face Dataset."
except Exception as e:
return f"Error saving audio: {str(e)}"
# Function to handle navigation buttons
def navigate_lines(button):
global line_index, lines
if button == 'forward':
line_index = min(line_index + 1, len(lines) - 1)
elif button == 'previous':
line_index = max(line_index - 1, 0)
return lines[line_index].strip() if lines else "No lines found."
# Function to handle file upload
def upload_file(file):
if file is not None:
file_path = file.name
return read_lines_from_file(file_path)
else:
return "No file uploaded."
# Gradio interface function
def audio_capture_interface():
with gr.Blocks() as iface:
with gr.Row():
file_upload = gr.File(label="Upload a text file", file_types=["text"])
text_display = gr.Textbox(label="Text", value="Please upload a file to begin.", interactive=False)
with gr.Row():
audio_input = gr.Audio(sources=["microphone","upload"], type="filepath", label="Speak and click submit")
with gr.Row():
status_output = gr.Textbox(label="Status", placeholder="Status will appear here")
with gr.Row():
gr.Button("Previous").click(lambda: navigate_lines('previous'), None, text_display)
gr.Button("Forward").click(lambda: navigate_lines('forward'), None, text_display)
gr.Button("Submit").click(process_audio, inputs=audio_input, outputs=status_output)
file_upload.upload(upload_file, outputs=text_display)
return iface
# Launch the interface
iface = audio_capture_interface()
iface.launch()
|