Spaces:
Running
Running
File size: 10,034 Bytes
7c4da79 df40eb2 8f2e1c5 fddbaa6 8f2e1c5 7c4da79 fddbaa6 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 3bb4577 8f2e1c5 7c4da79 8f2e1c5 032351b 99560b7 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 fddbaa6 55fd32b fddbaa6 48127ed fddbaa6 589585c fddbaa6 55fd32b a29fe00 7e0d309 fddbaa6 d1edfdd a29fe00 7e0d309 a29fe00 7e0d309 a29fe00 55fd32b a29fe00 55fd32b d1edfdd a29fe00 55fd32b a29fe00 1b4e4bb 94d9ec5 a29fe00 1b4e4bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import os
import gradio
import pandas as pd
import psycopg2
import re
import nltk
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import unicodedata
import json
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('stopwords')
def get_paragraph(row, index):
ans = ''
for x in row[index]:
ans = ans + ' ' + x.lower()
return ans
def remove_accents(text):
text = unicodedata.normalize('NFKD', text).encode(
'ASCII', 'ignore').decode('utf-8')
return text
def get_clean_text(row, index):
if not isinstance(row[index], str):
return ''
if row[index] == "NULL":
return ''
clean_text = ''
words = word_tokenize(row[index].lower())
for word in words:
word = word.replace(',', ' ')
word = remove_accents(word)
if re.match(r'^[a-zA-Z]+$', word) and word not in stop_words and len(word) > 1 and word[1] != '.':
clean_text += ' ' + word
return clean_text
def combine(row, indices):
ans = ''
for i in indices:
ans = ans + ' ' + row[i]
return ans
stop_words = set(stopwords.words('english'))
query = "SELECT * FROM base_springerdata"
CACHE = {}
SQL_KEY = 'sql'
JOURNAL_COMPLETE = 'journal_complete'
JOURNAL_PARTIAL = 'journal_partial'
VECTORIZER = 'vectorizer'
JOURNAL_TFIDF = 'journal_tfidf'
# Access the secrets
HOST = os.getenv('DATABASE_HOST')
DATABASE = os.getenv('DATABASE_NAME')
USER = os.getenv('DATABASE_USER')
PASSWORD = os.getenv('DATABASE_PASSWORD')
# load sql
def load_sql_data(query):
if SQL_KEY in CACHE:
return CACHE[SQL_KEY]
try:
conn = psycopg2.connect(
host=HOST,
database=DATABASE,
user=USER,
password=PASSWORD
)
df = pd.read_sql_query(query, conn)
df = df.drop(['item_doi'], axis=1)
# Close the database connection
conn.close()
CACHE[SQL_KEY] = df
return df
except psycopg2.Error:
# If there is an error connecting to the database, load data from the compressed CSV file
df = pd.read_csv('compressed_data.bz2', compression='bz2')
df = df.drop(['item_doi'], axis=1)
CACHE[SQL_KEY] = df
return df
# main_df
main_df = load_sql_data(query)
# load journal_df
def get_journal_df(df):
if JOURNAL_PARTIAL in CACHE:
return CACHE[JOURNAL_PARTIAL]
journal_art = df.groupby('publication_title')['item_title'].apply(
list).reset_index(name='Articles')
journal_art.set_index(['publication_title'], inplace=True)
journal_auth = df.groupby('publication_title')['authors'].apply(
list).reset_index(name='authors')
journal_auth.set_index('publication_title', inplace=True)
journal_key = df.drop_duplicates(
subset=["publication_title", "keywords"], keep='first')
journal_key = journal_key.drop(
['item_title', 'authors', 'publication_year', 'url'], axis=1)
journal_key.set_index(['publication_title'], inplace=True)
journal_main = journal_art.join([journal_key, journal_auth])
print('journal_main intial')
journal_main.reset_index(inplace=True)
journal_main['Articles'] = journal_main.apply(
get_paragraph, index='Articles', axis=1)
journal_main['Articles'] = journal_main.apply(
get_clean_text, index='Articles', axis=1)
journal_main['authors'] = journal_main.apply(
get_paragraph, index='authors', axis=1)
journal_main['authors'] = journal_main.apply(
get_clean_text, index='authors', axis=1)
journal_main['keywords'] = journal_main.apply(
get_clean_text, index='keywords', axis=1)
journal_main['Tags'] = journal_main.apply(
combine, indices=['keywords', 'Articles', 'authors'], axis=1)
journal_main['Tags'] = journal_main.apply(
get_clean_text, index='Tags', axis=1)
CACHE[JOURNAL_PARTIAL] = journal_main
return journal_main
# Journal Dataframe
journal_main = get_journal_df(main_df)
print('journal_main processed')
# load tfidfs
def get_tfidfs(journal_main):
if VECTORIZER and JOURNAL_TFIDF in CACHE:
return CACHE[VECTORIZER], CACHE[JOURNAL_TFIDF]
vectorizer = TfidfVectorizer(decode_error='ignore', strip_accents='ascii')
journal_tfidf_matrix = vectorizer.fit_transform(journal_main['Tags'])
CACHE[VECTORIZER] = vectorizer
CACHE[JOURNAL_TFIDF] = journal_tfidf_matrix
return vectorizer, journal_tfidf_matrix
vectorizer, journal_tfidf_matrix = get_tfidfs(journal_main)
print('tfids and vectorizer for journals completed')
def get_article_df(row):
article = main_df.loc[main_df['publication_title'] ==
journal_main['publication_title'][row.name]].copy()
article['item_title'] = article.apply(
get_clean_text, index='item_title', axis=1)
article['authors'] = article.apply(get_clean_text, index='authors', axis=1)
article['Tokenized'] = article['item_title'].apply(word_tokenize)
article['Tagged'] = article['Tokenized'].apply(pos_tag)
article['Tags'] = article['Tagged'].apply(lambda x: [word for word, tag in x if
tag.startswith('NN') or tag.startswith('JJ') and word.lower() not in stop_words])
article['Tags'] = article.apply(get_paragraph, index='Tags', axis=1)
article['Tags'] = article.apply(
lambda x: x['Tags'] + ' ' + x['authors'] + ' ' + str(x['publication_year']), axis=1)
article = article.drop(['keywords', 'publication_title',
'Tokenized', 'Tagged', 'authors', 'publication_year'], axis=1)
article.reset_index(inplace=True)
article.set_index('index', inplace=True)
return article
def get_vectorizer(row):
vectorizer = TfidfVectorizer(decode_error='ignore', strip_accents='ascii')
return vectorizer
def get_tfidf_matrix(row):
tfidf_matrix = row['article_vectorizer'].fit_transform(
row['article_df']['Tags'])
return tfidf_matrix
def article_preprocessing(df):
if JOURNAL_COMPLETE in CACHE:
return CACHE[JOURNAL_COMPLETE]
df['article_df'] = df.apply(get_article_df, axis=1)
df['article_vectorizer'] = df.apply(get_vectorizer, axis=1)
df['article_matrix'] = df.apply(get_tfidf_matrix, axis=1)
CACHE[JOURNAL_COMPLETE] = df
return df
journal_main = article_preprocessing(journal_main)
print('done')
# prediction
journal_threshold = 4
def get_journal_index(user_input):
user_tfidf = vectorizer.transform([user_input])
cosine_similarities = cosine_similarity(
user_tfidf, journal_tfidf_matrix).flatten()
indices = cosine_similarities.argsort()[::-1]
top_recommendations = [i for i in indices if cosine_similarities[i] > 0][:min(
journal_threshold, len(indices))]
return top_recommendations
article_threshold = 10
def get_article_recommendations(user_input):
recommended_journals = get_journal_index(user_input)
recommendations = []
for journal_id in recommended_journals:
user_tfidf = journal_main['article_vectorizer'][journal_id].transform([
user_input])
cosine_similarities = cosine_similarity(
user_tfidf, journal_main['article_matrix'][journal_id]).flatten()
indices = cosine_similarities.argsort()[::-1]
top_recommendation_articles = [(cosine_similarities[i], i, journal_id) for i in indices if
cosine_similarities[i] > 0][:min(article_threshold, len(indices))]
recommendations += top_recommendation_articles
recommendations.sort(reverse=True)
return recommendations
def validation(text):
words = word_tokenize(text)
# Perform part-of-speech tagging
tagged_words = pos_tag(words)
# Check if any adjective or noun is present
adjectives = [word for word, pos in tagged_words if pos.startswith('JJ')]
nouns = [word for word, pos in tagged_words if pos.startswith('NN')]
result = {}
if not adjectives and not nouns:
result['validation'] = 'invalid'
else:
adjective_str = ' '.join(adjectives)
noun_str = ' '.join(nouns)
combined_sentence = f"{adjective_str} {noun_str}".strip()
result['validation'] = 'valid'
result['sentence'] = combined_sentence
return result
def get_links(user_input):
check=validation(user_input)
if check['validation'] == 'valid':
recommendations = get_article_recommendations(check['sentence'])
links = []
for article in recommendations:
cosine_similarity, article_id, journal_id = article
link = {
"title": journal_main['article_df'][journal_id].iloc[article_id, 0],
"url": journal_main['article_df'][journal_id].iloc[article_id, 1],
"article_id": int(article_id),
"journal_id": int(journal_id)
}
links.append(link)
return links
else:
return []
validation_interface = gradio.Interface(
fn=validation,
inputs="text",
outputs=gradio.outputs.JSON(),
title="Validation API - Testing API of ScholarSync",
description="API to validate user input"
)
links_interface = gradio.Interface(
fn=get_links,
inputs="text",
outputs=gradio.outputs.JSON(),
examples=[
["AI"],
["Biochemicals"],
["Rocket Science"]
],
title="Article Links Generator API - Testing API of ScholarSync",
description="API to generate article recommendations based on user input"
)
# Combine interfaces into a single app
app = gradio.TabbedInterface([links_interface, validation_interface], ["articles link generation", "validation"])
# Run the app
if __name__ == "__main__":
app.launch()
|