File size: 5,243 Bytes
0253766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch import optim
from pytorch_lightning import LightningModule
from torchmetrics import Accuracy
from utils.visualize import find_lr



class MyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Sequential (
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1,bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
            )  # Number of Parameters = 3*3*3*64=1728
        # Layer 1
        self.conv11 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1,bias=False),
            nn.MaxPool2d(kernel_size=2,stride=2),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True)
            )  # Number of Parameters = 3*3*64*128 = 73728
        self.conv12 = nn.Sequential(
            nn.Conv2d(128,128, kernel_size=3, stride=1, padding=1,bias=False),# Number of Parameters = 3*3*64*128 = 73728
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128,128, kernel_size=3, stride=1, padding=1,bias=False),# Number of Parameters = 3*3*64*128 = 73728
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True)
            )

        # Layer 2
        self.conv2 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1,bias=False),
            nn.MaxPool2d(kernel_size=2,stride=2),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True)
            )

        # Layer 3
        self.conv31 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1,bias=False),
            nn.MaxPool2d(kernel_size=2,stride=2),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True)
            )
        self.conv32 = nn.Sequential(
            nn.Conv2d(512,512, kernel_size=3, stride=1, padding=1,bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512,512, kernel_size=3, stride=1, padding=1,bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True)
            )

        self.maxpool = nn.MaxPool2d(kernel_size=4,stride=2)

        # Fully connected
        self.fc = nn.Linear(512, 10, bias=True)

    def forward(self, x):
        #x = x.unsqueeze(0)
        x = self.conv1(x)

        x = self.conv11(x)
        R1=x
        x = self.conv12(x)
        x=x+R1

        x = self.conv2(x)

        x = self.conv31(x)
        R2=x
        x = self.conv32(x)
        x=x+R2

        x = self.maxpool(x)
       
        x = x.squeeze(dim=2)
        x = x.squeeze(dim=2)
        x = self.fc(x)
        x = x.view(-1, 10)
        
        return x


class Model(LightningModule):
    def __init__(self, dataset,max_epochs=24):
        super(Model, self).__init__()

        self.dataset = dataset
        self.network= MyModel()
        self.criterion = nn.CrossEntropyLoss()
        self.train_accuracy = Accuracy(task='multiclass', num_classes=10)
        self.val_accuracy = Accuracy(task='multiclass', num_classes=10)

        self.max_epochs = max_epochs

    def forward(self, x):
        return self.network(x)

    def common_step(self, batch, mode):
        x, y = batch
        logits = self.forward(x)
        loss = self.criterion(logits, y)

        acc_metric = getattr(self, f'{mode}_accuracy')
        acc_metric(logits, y)

        return loss

    def training_step(self, batch, batch_idx):
        loss = self.common_step(batch, 'train')
        self.log("train_loss", loss, on_epoch=True, prog_bar=True, logger=True)
        self.log("train_acc", self.train_accuracy, on_epoch=True, prog_bar=True, logger=True)
        return loss

    def validation_step(self, batch, batch_idx):
        loss = self.common_step(batch, 'val')
        self.log("val_loss", loss, on_epoch=True, prog_bar=True, logger=True)
        self.log("val_acc", self.val_accuracy, on_epoch=True, prog_bar=True, logger=True)
        return loss

    def predict_step(self, batch, batch_idx, dataloader_idx=0):
        if isinstance(batch, list):
            x, _ = batch
        else:
            x = batch
        return self.forward(x)

    def configure_optimizers(self):
        optimizer = optim.Adam(self.parameters(), lr=1e-7, weight_decay=1e-2)
        best_lr = find_lr(self, self.train_dataloader(), optimizer, self.criterion)
        scheduler = optim.lr_scheduler.OneCycleLR(
            optimizer,
            max_lr=best_lr,
            steps_per_epoch=len(self.dataset.train_loader),
            epochs=self.max_epochs,
            pct_start=5/self.max_epochs,
            div_factor=100,
            three_phase=False,
            final_div_factor=100,
            anneal_strategy='linear'
        )
        return {
            'optimizer': optimizer,
            'lr_scheduler': {
                "scheduler": scheduler,
                "interval": "step",
            }
        }

    def prepare_data(self):
        self.dataset.download()

    def train_dataloader(self):
        return self.dataset.train_loader

    def val_dataloader(self):
        return self.dataset.test_loader

    def predict_dataloader(self):
        return self.val_dataloader()