File size: 8,270 Bytes
cb0e352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""
    Helper functions mainly for multilingual text image customization.
    Acknowledgement: Codes here are heavily borrowed from TextFLUX: https://github.com/yyyyyxie/textflux.
"""

import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont


def generate_prompt(words):
    words_str = ', '.join(f"'{word}'" for word in words)
    prompt_template = (
        "The pair of images highlights some white words on a black background, as well as their style on a real-world scene image. "
        "[IMAGE1] is a template image rendering the text, with the words {words}; "
        "[IMAGE2] shows the text content {words} naturally and correspondingly integrated into the image."
    )
    return prompt_template.format(words=words_str)


prompt_template2 = (
    "The pair of images highlights some white words on a black background, as well as their style on a real-world scene image. "
    "[IMAGE1] is a template image rendering the text, with the words; "
    "[IMAGE2] shows the text content naturally and correspondingly integrated into the image."
)


def run_multilingual_inference(model, image_input, mask_input, reference_input, texts,
                               num_steps=30, guidance_scale=30, seed=42, num_images=1):
    # Resize.
    width, height = image_input.size
    new_width = (width // 32) * 32
    new_height = (height // 32) * 32
    image_input = image_input.convert("RGB").resize((new_width, new_height))
    mask_input = mask_input.convert("RGB").resize((new_width, new_height))

    texts = [i.strip() for i in texts.split('\n')]
    rendered_text = render_glyph_multi(image_input, mask_input, texts)
    combined_image = Image.fromarray(np.hstack((np.array(rendered_text), np.array(image_input))))
    combined_mask = Image.fromarray(
        np.hstack((np.array(Image.new("RGB", image_input.size, (0, 0, 0))), np.array(mask_input))))

    prompt = generate_prompt(texts)
    print("Final prompt:", prompt)

    all_generated_images = []
    for i in range(num_images):
        res = model.generate(
            image=combined_image,
            mask_image=combined_mask,
            ref_image=reference_input,
            prompt=prompt_template2,
            prompt_2=prompt,
            scale=1.0,
            guidance_scale=guidance_scale,
            num_inference_steps=num_steps,
            width=combined_image.width,
            height=combined_image.height,
            seed=seed + i,
        )[0]
        all_generated_images.append(res)
    return all_generated_images


def insert_spaces(text, num_spaces):
    """
    Insert a specified number of spaces between each character to adjust spacing during text rendering.
    """
    if len(text) <= 1:
        return text
    return (' ' * num_spaces).join(list(text))


def draw_glyph2(
        font,
        text,
        polygon,
        vertAng=10,
        scale=1,
        width=512,
        height=512,
        add_space=True,
        scale_factor=2,
        rotate_resample=Image.BICUBIC,
        downsample_resample=Image.Resampling.LANCZOS
):
    """
    Render tilted/curved text within a specified region (defined by polygon):
        - First upscale (supersample), then rotate, then downsample to ensure high quality;
        - Dynamically adjust font size and whether to insert spaces between characters based on the region's shape.
    Return the final downsampled RGBA numpy array to the target dimensions (height, width).
    """
    big_w = width * scale_factor
    big_h = height * scale_factor

    # Upscale polygon coordinates
    big_polygon = polygon * scale_factor * scale
    rect = cv2.minAreaRect(big_polygon.astype(np.float32))
    box = cv2.boxPoints(rect)
    box = np.intp(box)

    w, h = rect[1]
    angle = rect[2]
    if angle < -45:
        angle += 90
    angle = -angle
    if w < h:
        angle += 90

    vert = False
    if (abs(angle) % 90 < vertAng or abs(90 - abs(angle) % 90) % 90 < vertAng):
        _w = max(box[:, 0]) - min(box[:, 0])
        _h = max(box[:, 1]) - min(box[:, 1])
        if _h >= _w:
            vert = True
            angle = 0

    # Create large image and temporary white background image
    big_img = Image.new("RGBA", (big_w, big_h), (0, 0, 0, 0))
    tmp = Image.new("RGB", big_img.size, "white")
    tmp_draw = ImageDraw.Draw(tmp)

    _, _, _tw, _th = tmp_draw.textbbox((0, 0), text, font=font)
    if _th == 0:
        text_w = 0
    else:
        w_f, h_f = float(w), float(h)
        text_w = min(w_f, h_f) * (_tw / _th)

    if text_w <= max(w, h):
        if len(text) > 1 and not vert and add_space:
            for i in range(1, 100):
                text_sp = insert_spaces(text, i)
                _, _, tw2, th2 = tmp_draw.textbbox((0, 0), text_sp, font=font)
                if th2 != 0:
                    if min(w, h) * (tw2 / th2) > max(w, h):
                        break
            text = insert_spaces(text, i - 1)
        font_size = min(w, h) * 0.80
    else:
        shrink = 0.75 if vert else 0.85
        if text_w != 0:
            font_size = min(w, h) / (text_w / max(w, h)) * shrink
        else:
            font_size = min(w, h) * 0.80

    new_font = font.font_variant(size=int(font_size))
    left, top, right, bottom = new_font.getbbox(text)
    text_width = right - left
    text_height = bottom - top

    # Create transparent text rendering layer
    layer = Image.new("RGBA", big_img.size, (0, 0, 0, 0))
    draw_layer = ImageDraw.Draw(layer)
    cx, cy = rect[0]
    if not vert:
        draw_layer.text(
            (cx - text_width // 2, cy - text_height // 2 - top),
            text,
            font=new_font,
            fill=(255, 255, 255, 255)
        )
    else:
        _w_ = max(box[:, 0]) - min(box[:, 0])
        x_s = min(box[:, 0]) + _w_ // 2 - text_height // 2
        y_s = min(box[:, 1])
        for c in text:
            draw_layer.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255))
            _, _t, _, _b = new_font.getbbox(c)
            y_s += _b

    rotated_layer = layer.rotate(
        angle,
        expand=True,
        center=(cx, cy),
        resample=rotate_resample
    )

    xo = int((big_img.width - rotated_layer.width) // 2)
    yo = int((big_img.height - rotated_layer.height) // 2)
    big_img.paste(rotated_layer, (xo, yo), rotated_layer)

    final_img = big_img.resize((width, height), downsample_resample)
    final_np = np.array(final_img)
    return final_np


def render_glyph_multi(original, computed_mask, texts):
    """
    For each independent region in computed_mask:
        - Extract region positions using contours and sort them from top to bottom, left to right;
        - Call draw_glyph2 to render corresponding text in each region (supports tilt/curve);
        - Overlay the rendering results of each region onto a transparent black background image, and output the final rendered image.
    """
    mask_np = np.array(computed_mask.convert("L"))
    contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    regions = []
    for cnt in contours:
        x, y, w, h = cv2.boundingRect(cnt)
        if w * h < 50:
            continue
        regions.append((x, y, w, h, cnt))
    regions = sorted(regions, key=lambda r: (r[1], r[0]))

    render_img = Image.new("RGBA", original.size, (0, 0, 0, 0))
    try:
        base_font = ImageFont.truetype("resources/Arial-Unicode-Regular.ttf", 40)
    except:
        base_font = ImageFont.load_default()

    for i, region in enumerate(regions):
        if i >= len(texts):
            break
        text = texts[i].strip()
        if not text:
            continue
        cnt = region[4]
        polygon = cnt.reshape(-1, 2)
        rendered_np = draw_glyph2(
            font=base_font,
            text=text,
            polygon=polygon,
            vertAng=10,
            scale=1,
            width=original.size[0],
            height=original.size[1],
            add_space=True,
            scale_factor=1,
            rotate_resample=Image.BICUBIC,
            downsample_resample=Image.Resampling.LANCZOS
        )
        rendered_img = Image.fromarray(rendered_np, mode="RGBA")
        render_img = Image.alpha_composite(render_img, rendered_img)
    return render_img.convert("RGB")