Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,270 Bytes
cb0e352 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
"""
Helper functions mainly for multilingual text image customization.
Acknowledgement: Codes here are heavily borrowed from TextFLUX: https://github.com/yyyyyxie/textflux.
"""
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
def generate_prompt(words):
words_str = ', '.join(f"'{word}'" for word in words)
prompt_template = (
"The pair of images highlights some white words on a black background, as well as their style on a real-world scene image. "
"[IMAGE1] is a template image rendering the text, with the words {words}; "
"[IMAGE2] shows the text content {words} naturally and correspondingly integrated into the image."
)
return prompt_template.format(words=words_str)
prompt_template2 = (
"The pair of images highlights some white words on a black background, as well as their style on a real-world scene image. "
"[IMAGE1] is a template image rendering the text, with the words; "
"[IMAGE2] shows the text content naturally and correspondingly integrated into the image."
)
def run_multilingual_inference(model, image_input, mask_input, reference_input, texts,
num_steps=30, guidance_scale=30, seed=42, num_images=1):
# Resize.
width, height = image_input.size
new_width = (width // 32) * 32
new_height = (height // 32) * 32
image_input = image_input.convert("RGB").resize((new_width, new_height))
mask_input = mask_input.convert("RGB").resize((new_width, new_height))
texts = [i.strip() for i in texts.split('\n')]
rendered_text = render_glyph_multi(image_input, mask_input, texts)
combined_image = Image.fromarray(np.hstack((np.array(rendered_text), np.array(image_input))))
combined_mask = Image.fromarray(
np.hstack((np.array(Image.new("RGB", image_input.size, (0, 0, 0))), np.array(mask_input))))
prompt = generate_prompt(texts)
print("Final prompt:", prompt)
all_generated_images = []
for i in range(num_images):
res = model.generate(
image=combined_image,
mask_image=combined_mask,
ref_image=reference_input,
prompt=prompt_template2,
prompt_2=prompt,
scale=1.0,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
width=combined_image.width,
height=combined_image.height,
seed=seed + i,
)[0]
all_generated_images.append(res)
return all_generated_images
def insert_spaces(text, num_spaces):
"""
Insert a specified number of spaces between each character to adjust spacing during text rendering.
"""
if len(text) <= 1:
return text
return (' ' * num_spaces).join(list(text))
def draw_glyph2(
font,
text,
polygon,
vertAng=10,
scale=1,
width=512,
height=512,
add_space=True,
scale_factor=2,
rotate_resample=Image.BICUBIC,
downsample_resample=Image.Resampling.LANCZOS
):
"""
Render tilted/curved text within a specified region (defined by polygon):
- First upscale (supersample), then rotate, then downsample to ensure high quality;
- Dynamically adjust font size and whether to insert spaces between characters based on the region's shape.
Return the final downsampled RGBA numpy array to the target dimensions (height, width).
"""
big_w = width * scale_factor
big_h = height * scale_factor
# Upscale polygon coordinates
big_polygon = polygon * scale_factor * scale
rect = cv2.minAreaRect(big_polygon.astype(np.float32))
box = cv2.boxPoints(rect)
box = np.intp(box)
w, h = rect[1]
angle = rect[2]
if angle < -45:
angle += 90
angle = -angle
if w < h:
angle += 90
vert = False
if (abs(angle) % 90 < vertAng or abs(90 - abs(angle) % 90) % 90 < vertAng):
_w = max(box[:, 0]) - min(box[:, 0])
_h = max(box[:, 1]) - min(box[:, 1])
if _h >= _w:
vert = True
angle = 0
# Create large image and temporary white background image
big_img = Image.new("RGBA", (big_w, big_h), (0, 0, 0, 0))
tmp = Image.new("RGB", big_img.size, "white")
tmp_draw = ImageDraw.Draw(tmp)
_, _, _tw, _th = tmp_draw.textbbox((0, 0), text, font=font)
if _th == 0:
text_w = 0
else:
w_f, h_f = float(w), float(h)
text_w = min(w_f, h_f) * (_tw / _th)
if text_w <= max(w, h):
if len(text) > 1 and not vert and add_space:
for i in range(1, 100):
text_sp = insert_spaces(text, i)
_, _, tw2, th2 = tmp_draw.textbbox((0, 0), text_sp, font=font)
if th2 != 0:
if min(w, h) * (tw2 / th2) > max(w, h):
break
text = insert_spaces(text, i - 1)
font_size = min(w, h) * 0.80
else:
shrink = 0.75 if vert else 0.85
if text_w != 0:
font_size = min(w, h) / (text_w / max(w, h)) * shrink
else:
font_size = min(w, h) * 0.80
new_font = font.font_variant(size=int(font_size))
left, top, right, bottom = new_font.getbbox(text)
text_width = right - left
text_height = bottom - top
# Create transparent text rendering layer
layer = Image.new("RGBA", big_img.size, (0, 0, 0, 0))
draw_layer = ImageDraw.Draw(layer)
cx, cy = rect[0]
if not vert:
draw_layer.text(
(cx - text_width // 2, cy - text_height // 2 - top),
text,
font=new_font,
fill=(255, 255, 255, 255)
)
else:
_w_ = max(box[:, 0]) - min(box[:, 0])
x_s = min(box[:, 0]) + _w_ // 2 - text_height // 2
y_s = min(box[:, 1])
for c in text:
draw_layer.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255))
_, _t, _, _b = new_font.getbbox(c)
y_s += _b
rotated_layer = layer.rotate(
angle,
expand=True,
center=(cx, cy),
resample=rotate_resample
)
xo = int((big_img.width - rotated_layer.width) // 2)
yo = int((big_img.height - rotated_layer.height) // 2)
big_img.paste(rotated_layer, (xo, yo), rotated_layer)
final_img = big_img.resize((width, height), downsample_resample)
final_np = np.array(final_img)
return final_np
def render_glyph_multi(original, computed_mask, texts):
"""
For each independent region in computed_mask:
- Extract region positions using contours and sort them from top to bottom, left to right;
- Call draw_glyph2 to render corresponding text in each region (supports tilt/curve);
- Overlay the rendering results of each region onto a transparent black background image, and output the final rendered image.
"""
mask_np = np.array(computed_mask.convert("L"))
contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
regions = []
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
if w * h < 50:
continue
regions.append((x, y, w, h, cnt))
regions = sorted(regions, key=lambda r: (r[1], r[0]))
render_img = Image.new("RGBA", original.size, (0, 0, 0, 0))
try:
base_font = ImageFont.truetype("resources/Arial-Unicode-Regular.ttf", 40)
except:
base_font = ImageFont.load_default()
for i, region in enumerate(regions):
if i >= len(texts):
break
text = texts[i].strip()
if not text:
continue
cnt = region[4]
polygon = cnt.reshape(-1, 2)
rendered_np = draw_glyph2(
font=base_font,
text=text,
polygon=polygon,
vertAng=10,
scale=1,
width=original.size[0],
height=original.size[1],
add_space=True,
scale_factor=1,
rotate_resample=Image.BICUBIC,
downsample_resample=Image.Resampling.LANCZOS
)
rendered_img = Image.fromarray(rendered_np, mode="RGBA")
render_img = Image.alpha_composite(render_img, rendered_img)
return render_img.convert("RGB")
|