File size: 6,989 Bytes
cb0e352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
    This is the script of scaled cross-reference customization inference with Calligrapher.
"""

import os
import json
import random
from PIL import Image
import numpy as np
from datetime import datetime

import torch
from diffusers.utils import load_image

from pipeline_calligrapher import CalligrapherPipeline
from models.calligrapher import Calligrapher
from models.transformer_flux_inpainting import FluxTransformer2DModel

from utils import resize_img_and_pad, generate_context_reference_image


def infer_calligrapher(test_image_dir, result_save_dir,
                       target_h=512, target_w=512,
                       gen_num_per_case=2):

    # Set job dir.
    job_name = datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
    result_save_path = os.path.join(result_save_dir, job_name)
    if not os.path.exists(result_save_path):
        os.makedirs(result_save_path, exist_ok=True)

    # Load models.
    base_model_path = path_dict['base_model_path']
    image_encoder_path = path_dict['image_encoder_path']
    calligrapher_path = path_dict['calligrapher_path']
    transformer = FluxTransformer2DModel.from_pretrained(
        base_model_path, subfolder="transformer", torch_dtype=torch.bfloat16
    )
    pipe = CalligrapherPipeline.from_pretrained(base_model_path,
                                                transformer=transformer, torch_dtype=torch.bfloat16).to("cuda")
    model = Calligrapher(pipe, image_encoder_path, calligrapher_path,
                         device="cuda", num_tokens=128)

    source_image_names = [i for i in os.listdir(test_image_dir) if 'source.png' in i]
    # Loading prompts from the bench txt and printing them.
    info_dict = {}
    with open(os.path.join(test_image_dir, 'cross_bench.txt'), 'r') as file:
        for line in file:
            line = line.strip()
            if line:
                key, value = line.split('-', 1)
                info_dict[int(key)] = value
        print(info_dict)
        i = 0
        print('Printing given prompts...')
        for img_id in sorted(info_dict.keys()):
            i += 1
            info = info_dict[img_id]
            print(f'Sample #{i}: {img_id} - {info}')

    count = 0
    for source_image_name in sorted(source_image_names):
        count += 1
        img_id = int(source_image_name.split("test")[1].split("_")[0])
        if img_id not in info_dict.keys():
            continue
        info = info_dict[img_id]
        ref_ids, text = info.split('-')
        ref_ids = ref_ids.split(',')
        prompt = f"The text is '{text}'."

        source_image_path = os.path.join(test_image_dir, source_image_name)
        mask_image_name = source_image_name.replace('source', 'mask')
        mask_image_path = os.path.join(test_image_dir, mask_image_name)

        for ref_id in ref_ids:
            reference_image_name = source_image_name.replace('source', 'ref').replace(f'{img_id}', f'{ref_id}')
            reference_image_path = os.path.join(test_image_dir, reference_image_name)

            print('source_image_path: ',    source_image_path)
            print('mask_image_path: ',      mask_image_path)
            print('reference_image_path: ', reference_image_path)
            print(f'prompt: {prompt}')

            source_image = load_image(source_image_path)
            mask_image = load_image(mask_image_path)
            # Resize source and mask.
            source_image = source_image.resize((target_w, target_h))
            mask_image = mask_image.resize((target_w, target_h), Image.NEAREST)
            mask_np = np.array(mask_image)
            mask_np[mask_np > 0] = 255
            mask_image = Image.fromarray(mask_np.astype(np.uint8))
            source_img_w, source_img_h = source_image.size

            # resize reference to fit CLIP.
            reference_image = Image.open(reference_image_path).convert("RGB")
            reference_image_to_encoder = resize_img_and_pad(reference_image, target_size=[512, 512])

            reference_context = generate_context_reference_image(reference_image, source_img_w)
            # Concat the context image on the top.
            source_with_context = Image.new(source_image.mode, (source_img_w, reference_context.size[1] + source_img_h))
            source_with_context.paste(reference_context, (0, 0))
            source_with_context.paste(source_image, (0, reference_context.size[1]))
            # Concat the 0 mask on the top of the mask image.
            mask_with_context = Image.new(mask_image.mode,
                                          (mask_image.size[0], reference_context.size[1] + mask_image.size[0]), color=0)
            mask_with_context.paste(mask_image, (0, reference_context.size[1]))

            # Identifiers in filename.
            ref_id = reference_image_name.split('_')[0]
            safe_prompt = prompt.replace(" ", "_").replace("'", "").replace(",", "").replace('"', '').replace('?', '')[:50]

            for i in range(gen_num_per_case):
                seed = random.randint(0, 2 ** 32 - 1)
                images = model.generate(
                    image=source_with_context,
                    mask_image=mask_with_context,
                    ref_image=reference_image_to_encoder,
                    prompt=prompt,
                    scale=1.0,
                    num_inference_steps=50,
                    width=source_with_context.size[0],
                    height=source_with_context.size[1],
                    seed=seed,
                )

                index = len(os.listdir(result_save_path))
                output_filename = f"result_{index}_{ref_id}_{safe_prompt}_{seed}.png"

                result_img = images[0]
                result_img_vis = result_img.crop((0, reference_context.size[1], result_img.width, result_img.height))
                result_img_vis.save(os.path.join(result_save_path, output_filename))

                target_size = (source_image.size[0], source_image.size[1])
                vis_img = Image.new('RGB', (source_image.size[0] * 3, source_image.size[1]))
                vis_img.paste(source_image.resize(target_size), (0, 0))
                vis_img.paste(reference_context.resize(target_size), (source_image.size[0], 0))
                vis_img.paste(result_img_vis.resize(target_size), (source_image.size[0] * 2, 0))
                vis_img_save_path = os.path.join(result_save_path, f'vis_{output_filename}'.replace('.png', '.jpg'))
                vis_img.save(vis_img_save_path)
                print(f"Generated images saved to {vis_img_save_path}.")


if __name__ == '__main__':
    with open(os.path.join(os.path.dirname(__file__), 'path_dict.json'), 'r') as f:
        path_dict = json.load(f)
    # Set directory paths.
    test_image_dir = path_dict['data_dir']
    result_save_dir = path_dict['cli_save_dir']
    infer_calligrapher(test_image_dir, result_save_dir,
                       target_h=512, target_w=512,
                       gen_num_per_case=2)
    print('Finished!')