Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,713 Bytes
cb0e352 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
"""
Gradio demo for text customization with Calligrapher (the reference AND MASK are uploaded by the user).
This demo is useful for reproduction.
"""
import os
import json
import gradio as gr
import numpy as np
from datetime import datetime
import torch
from PIL import Image
from pipeline_calligrapher import CalligrapherPipeline
from models.calligrapher import Calligrapher
from models.transformer_flux_inpainting import FluxTransformer2DModel
from utils import get_bbox_from_mask, crop_image_from_bb, \
resize_img_and_pad, generate_context_reference_image
# Global settings.
with open(os.path.join(os.path.dirname(__file__), 'path_dict.json'), 'r') as f:
path_dict = json.load(f)
SAVE_DIR = path_dict['gradio_save_dir']
os.environ["GRADIO_TEMP_DIR"] = path_dict['gradio_temp_dir']
os.environ['TMPDIR'] = path_dict['gradio_temp_dir']
# Function of loading pre-trained models.
def load_models():
base_model_path = path_dict['base_model_path']
image_encoder_path = path_dict['image_encoder_path']
calligrapher_path = path_dict['calligrapher_path']
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder="transformer",
torch_dtype=torch.bfloat16)
pipe = CalligrapherPipeline.from_pretrained(base_model_path, transformer=transformer,
torch_dtype=torch.bfloat16).to("cuda")
model = Calligrapher(pipe, image_encoder_path, calligrapher_path, device="cuda", num_tokens=128)
return model
# Init models.
model = load_models()
print('Model loaded!')
def process_and_generate(source_image, mask_image, reference_image, prompt, height, width,
scale, steps=50, seed=42, use_context=True, num_images=1):
print('Begin processing!')
# Job directory.
job_name = datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
job_dir = os.path.join(SAVE_DIR, job_name)
os.makedirs(job_dir, exist_ok=True)
# Get source, mask, and cropped images from gr.ImageEditor.
source_image.save(os.path.join(job_dir, 'source_image.png'))
mask_image.save(os.path.join(job_dir, 'mask_image.png'))
# Resize source and mask.
source_image = source_image.resize((width, height))
mask_image = mask_image.resize((width, height), Image.NEAREST)
mask_np = np.array(mask_image)
mask_np[mask_np > 0] = 255
mask_image = Image.fromarray(mask_np.astype(np.uint8))
if reference_image is None:
# If self-inpaint (no input ref): (1) get bounding box from the mask and (2) perform cropping to get ref image.
tl, br = get_bbox_from_mask(mask_image)
# Convert irregularly shaped masks into rectangles.
reference_image = crop_image_from_bb(source_image, tl, br)
# Raw reference image before resizing.
reference_image.save(os.path.join(job_dir, 'reference_image_raw.png'))
reference_image_to_encoder = resize_img_and_pad(reference_image, target_size=(512, 512)) # 512 considering SigLip
reference_image_to_encoder.save(os.path.join(job_dir, 'reference_to_encoder.png'))
reference_context = generate_context_reference_image(reference_image, width)
if use_context:
# Concat the context on the top of the input masked image in the pixel space.
source_with_context = Image.new(source_image.mode, (width, reference_context.size[1] + height))
source_with_context.paste(reference_context, (0, 0))
source_with_context.paste(source_image, (0, reference_context.size[1]))
source_with_context.save(os.path.join(job_dir, 'source_with_context.png'))
# Concat the zero mask on the top of the mask image.
mask_with_context = Image.new(mask_image.mode,
(mask_image.size[0], reference_context.size[1] + mask_image.size[0]), color=0)
mask_with_context.paste(mask_image, (0, reference_context.size[1]))
source_image = source_with_context
mask_image = mask_with_context
all_generated_images = []
for i in range(num_images):
res = model.generate(
image=source_image,
mask_image=mask_image,
ref_image=reference_image_to_encoder,
prompt=prompt,
scale=scale,
num_inference_steps=steps,
width=source_image.size[0],
height=source_image.size[1],
seed=seed + i,
)[0]
if use_context:
res_vis = res.crop((0, reference_context.size[1], res.width, res.height)) # remove context
mask_vis = mask_image.crop(
(0, reference_context.size[1], mask_image.width, mask_image.height)) # remove context mask
else:
res_vis = res
mask_vis = mask_image
res_vis.save(os.path.join(job_dir, f'result_{i}.png'))
all_generated_images.append((res_vis, f"Generating {i + 1} (Seed: {seed + i})"))
return mask_vis, reference_image_to_encoder, all_generated_images
# Construct example data.
sample_data = [
{
"source": Image.open("samples/test11_source.png"),
"mask": Image.open("samples/test11_mask.png"),
"reference": Image.open("samples/test11_ref.png"),
"prompt": "The text is 'Rose'."
},
{
"source": Image.open("samples/test17_source.png"),
"mask": Image.open("samples/test17_mask.png"),
"reference": Image.open("samples/rainbow.jpg"),
"prompt": "The text is 'Rainbow'."
},
{
"source": Image.open("samples/test17_source.png"),
"mask": Image.open("samples/test17_mask.png"),
"reference": Image.open("samples/fire.jpg"),
"prompt": "The text is 'Fire!'."
}
]
examples = [
[
sample["source"],
sample["mask"],
sample["reference"],
sample["prompt"],
512, # height
512, # width
1.0, # scale
10, # steps
2025, # seed
True, # use_context
2 # num_images
]
for sample in sample_data
]
# Main gradio codes.
with gr.Blocks(theme="default", css=".image-editor img {max-width: 70%; height: 70%;}") as demo:
gr.Markdown(
"""
# 🖌️ Calligrapher: Freestyle Text Image Customization
"""
)
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("### 🎨 Image Editing Panel")
source_image = gr.Image(
label="Source Image",
sources=["upload"],
type="pil",
value=Image.open(f"samples/test50_source.png"),
)
gr.Markdown("### 📤 Output Result")
gallery = gr.Gallery(label="🖼️ Result Gallery")
gr.Markdown(
"""<br>
### ✨User Tips:
1. **Speed vs Quality Trade-off.** Use fewer steps (e.g., 10-step which takes ~4s/image on a single A6000 GPU) for faster generation, but quality may be lower.
2. **Inpaint Position Freedom.** Inpainting positions are flexible - they don't necessarily need to match the original text locations in the input image.
3. **Iterative Editing.** Drag outputs from the gallery to the Image Editing Panel (clean the Editing Panel first) for quick refinements.
4. **Mask Optimization.** Adjust mask size/aspect ratio to match your desired content. The model tends to fill the masks, and harmonizes the generation with background in terms of color and lighting.
5. **Reference Image Tip.** White-background references improve style consistency - the encoder also considers background context of the given reference image.
6. **Resolution Balance.** Very high-resolution generation sometimes triggers spelling errors. 512/768px are recommended considering the model is trained under the resolution of 512.
"""
)
with gr.Column(scale=1):
gr.Markdown("### ⚙️Settings")
mask_image = gr.Image(
label="🧩 Mask Image",
sources=["upload"],
type="pil",
value=Image.open(f"samples/test50_mask.png"),
)
reference_image = gr.Image(
label="🧩 Reference Image",
sources=["upload"],
type="pil",
value=Image.open(f"samples/test50_ref.png")
)
prompt = gr.Textbox(
label="📝 Prompt",
placeholder="The text is 'Image'...",
value="The text is 'Balloon'."
)
with gr.Accordion("🔧 Additional Settings", open=True):
with gr.Row():
height = gr.Number(label="Height", value=512, precision=0)
width = gr.Number(label="Width", value=512, precision=0)
scale = gr.Slider(0.0, 2.0, 1.0, step=0.1, value=1.0, label="🎚️ Strength")
steps = gr.Slider(1, 100, 50, step=1, label="🔁 Steps")
with gr.Row():
seed = gr.Number(label="🎲 Seed", value=56, precision=0)
use_context = gr.Checkbox(value=True, label="🔍 Use Context", interactive=True)
num_images = gr.Slider(1, 16, 2, step=1, label="🖼️ Sample Amount")
run_btn = gr.Button("🚀 Run", variant="primary")
mask_output = gr.Image(label="🟩 Mask Demo")
reference_demo = gr.Image(label="🧩 Reference Demo")
# Run button event.
run_btn.click(
fn=process_and_generate,
inputs=[
source_image,
mask_image,
reference_image,
prompt,
height,
width,
scale,
steps,
seed,
use_context,
num_images
],
outputs=[
mask_output,
reference_demo,
gallery
]
)
gr.Examples(
examples=examples,
inputs=[
source_image,
mask_image,
reference_image,
prompt,
height,
width,
scale,
steps,
seed,
use_context,
num_images
],
outputs=[
mask_output,
reference_demo,
gallery
],
fn=process_and_generate,
label="✨ Example Inputs: Click any example below to load it.",
examples_per_page=3
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=1234, share=False)
|