File size: 6,483 Bytes
ad250d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# https://github.com/fatheral/matlab_imresize
#
# MIT License
#
# Copyright (c) 2020 Alex
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.


from __future__ import print_function
import numpy as np
from math import ceil, floor


def deriveSizeFromScale(img_shape, scale):
    output_shape = []
    for k in range(2):
        output_shape.append(int(ceil(scale[k] * img_shape[k])))
    return output_shape


def deriveScaleFromSize(img_shape_in, img_shape_out):
    scale = []
    for k in range(2):
        scale.append(1.0 * img_shape_out[k] / img_shape_in[k])
    return scale


def triangle(x):
    x = np.array(x).astype(np.float64)
    lessthanzero = np.logical_and((x >= -1), x < 0)
    greaterthanzero = np.logical_and((x <= 1), x >= 0)
    f = np.multiply((x + 1), lessthanzero) + np.multiply((1 - x), greaterthanzero)
    return f


def cubic(x):
    x = np.array(x).astype(np.float64)
    absx = np.absolute(x)
    absx2 = np.multiply(absx, absx)
    absx3 = np.multiply(absx2, absx)
    f = np.multiply(1.5 * absx3 - 2.5 * absx2 + 1, absx <= 1) + np.multiply(-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2,
                                                                            (1 < absx) & (absx <= 2))
    return f


def contributions(in_length, out_length, scale, kernel, k_width):
    if scale < 1:
        h = lambda x: scale * kernel(scale * x)
        kernel_width = 1.0 * k_width / scale
    else:
        h = kernel
        kernel_width = k_width
    x = np.arange(1, out_length + 1).astype(np.float64)
    u = x / scale + 0.5 * (1 - 1 / scale)
    left = np.floor(u - kernel_width / 2)
    P = int(ceil(kernel_width)) + 2
    ind = np.expand_dims(left, axis=1) + np.arange(P) - 1  # -1 because indexing from 0
    indices = ind.astype(np.int32)
    weights = h(np.expand_dims(u, axis=1) - indices - 1)  # -1 because indexing from 0
    weights = np.divide(weights, np.expand_dims(np.sum(weights, axis=1), axis=1))
    aux = np.concatenate((np.arange(in_length), np.arange(in_length - 1, -1, step=-1))).astype(np.int32)
    indices = aux[np.mod(indices, aux.size)]
    ind2store = np.nonzero(np.any(weights, axis=0))
    weights = weights[:, ind2store]
    indices = indices[:, ind2store]
    return weights, indices


def imresizemex(inimg, weights, indices, dim):
    in_shape = inimg.shape
    w_shape = weights.shape
    out_shape = list(in_shape)
    out_shape[dim] = w_shape[0]
    outimg = np.zeros(out_shape)
    if dim == 0:
        for i_img in range(in_shape[1]):
            for i_w in range(w_shape[0]):
                w = weights[i_w, :]
                ind = indices[i_w, :]
                im_slice = inimg[ind, i_img].astype(np.float64)
                outimg[i_w, i_img] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0)
    elif dim == 1:
        for i_img in range(in_shape[0]):
            for i_w in range(w_shape[0]):
                w = weights[i_w, :]
                ind = indices[i_w, :]
                im_slice = inimg[i_img, ind].astype(np.float64)
                outimg[i_img, i_w] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0)
    if inimg.dtype == np.uint8:
        outimg = np.clip(outimg, 0, 255)
        return np.around(outimg).astype(np.uint8)
    else:
        return outimg


def imresizevec(inimg, weights, indices, dim):
    wshape = weights.shape
    if dim == 0:
        weights = weights.reshape((wshape[0], wshape[2], 1, 1))
        outimg = np.sum(weights * ((inimg[indices].squeeze(axis=1)).astype(np.float64)), axis=1)
    elif dim == 1:
        weights = weights.reshape((1, wshape[0], wshape[2], 1))
        outimg = np.sum(weights * ((inimg[:, indices].squeeze(axis=2)).astype(np.float64)), axis=2)
    if inimg.dtype == np.uint8:
        outimg = np.clip(outimg, 0, 255)
        return np.around(outimg).astype(np.uint8)
    else:
        return outimg


def resizeAlongDim(A, dim, weights, indices, mode="vec"):
    if mode == "org":
        out = imresizemex(A, weights, indices, dim)
    else:
        out = imresizevec(A, weights, indices, dim)
    return out


def imresize(I, scalar_scale=None, method='bicubic', output_shape=None, mode="vec"):
    if method is 'bicubic':
        kernel = cubic
    elif method is 'bilinear':
        kernel = triangle
    else:
        print('Error: Unidentified method supplied')

    kernel_width = 4.0
    # Fill scale and output_size
    if scalar_scale is not None:
        scalar_scale = float(scalar_scale)
        scale = [scalar_scale, scalar_scale]
        output_size = deriveSizeFromScale(I.shape, scale)
    elif output_shape is not None:
        scale = deriveScaleFromSize(I.shape, output_shape)
        output_size = list(output_shape)
    else:
        print('Error: scalar_scale OR output_shape should be defined!')
        return
    scale_np = np.array(scale)
    order = np.argsort(scale_np)
    weights = []
    indices = []
    for k in range(2):
        w, ind = contributions(I.shape[k], output_size[k], scale[k], kernel, kernel_width)
        weights.append(w)
        indices.append(ind)
    B = np.copy(I)
    flag2D = False
    if B.ndim == 2:
        B = np.expand_dims(B, axis=2)
        flag2D = True
    for k in range(2):
        dim = order[k]
        B = resizeAlongDim(B, dim, weights[dim], indices[dim], mode)
    if flag2D:
        B = np.squeeze(B, axis=2)
    return B


def convertDouble2Byte(I):
    B = np.clip(I, 0.0, 1.0)
    B = 255 * B
    return np.around(B).astype(np.uint8)