File size: 29,352 Bytes
ba92f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
"""
vectors/retrieval_guard.py - Security for Retrieval-Augmented Generation (RAG) operations
"""

import numpy as np
from typing import Dict, List, Optional, Any, Tuple, Set
from dataclasses import dataclass
from datetime import datetime
from enum import Enum
import hashlib
import re
from collections import defaultdict
from ..core.logger import SecurityLogger
from ..core.exceptions import SecurityError

class RetrievalRisk(Enum):
    """Types of retrieval-related risks"""
    RELEVANCE_MANIPULATION = "relevance_manipulation"
    CONTEXT_INJECTION = "context_injection"
    DATA_POISONING = "data_poisoning"
    RETRIEVAL_BYPASS = "retrieval_bypass"
    PRIVACY_LEAK = "privacy_leak"
    EMBEDDING_ATTACK = "embedding_attack"
    CHUNKING_MANIPULATION = "chunking_manipulation"

@dataclass
class RetrievalContext:
    """Context for retrieval operations"""
    query_embedding: np.ndarray
    retrieved_embeddings: List[np.ndarray]
    retrieved_content: List[str]
    metadata: Optional[Dict[str, Any]] = None
    source: Optional[str] = None

@dataclass
class SecurityCheck:
    """Security check definition"""
    name: str
    description: str
    threshold: float
    severity: int  # 1-10

@dataclass
class CheckResult:
    """Result of a security check"""
    check_name: str
    passed: bool
    risk_level: float
    details: Dict[str, Any]
    recommendations: List[str]

@dataclass
class GuardResult:
    """Complete result of retrieval guard checks"""
    is_safe: bool
    checks_passed: List[str]
    checks_failed: List[str]
    risks: List[RetrievalRisk]
    filtered_content: List[str]
    metadata: Dict[str, Any]

class RetrievalGuard:
    """Security guard for RAG operations"""
    
    def __init__(self, security_logger: Optional[SecurityLogger] = None):
        self.security_logger = security_logger
        self.security_checks = self._initialize_security_checks()
        self.risk_patterns = self._initialize_risk_patterns()
        self.check_history: List[GuardResult] = []

    def _initialize_security_checks(self) -> Dict[str, SecurityCheck]:
        """Initialize security checks"""
        return {
            "relevance": SecurityCheck(
                name="relevance_check",
                description="Check relevance between query and retrieved content",
                threshold=0.7,
                severity=7
            ),
            "consistency": SecurityCheck(
                name="consistency_check",
                description="Check consistency among retrieved chunks",
                threshold=0.6,
                severity=6
            ),
            "privacy": SecurityCheck(
                name="privacy_check",
                description="Check for potential privacy leaks",
                threshold=0.8,
                severity=9
            ),
            "injection": SecurityCheck(
                name="injection_check",
                description="Check for context injection attempts",
                threshold=0.75,
                severity=8
            ),
            "chunking": SecurityCheck(
                name="chunking_check",
                description="Check for chunking manipulation",
                threshold=0.65,
                severity=6
            )
        }

    def _initialize_risk_patterns(self) -> Dict[str, Any]:
        """Initialize risk detection patterns"""
        return {
            "privacy_patterns": {
                "pii": r"\b\d{3}-\d{2}-\d{4}\b",  # SSN
                "email": r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b",
                "credit_card": r"\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b",
                "api_key": r"\b([A-Za-z0-9]{32,})\b"
            },
            "injection_patterns": {
                "system_prompt": r"system:\s*|instruction:\s*",
                "delimiter": r"[<\[{](?:system|prompt|instruction)[>\]}]",
                "escape": r"\\n|\\r|\\t|\\b|\\f"
            },
            "manipulation_patterns": {
                "repetition": r"(.{50,}?)\1{2,}",
                "formatting": r"\[format\]|\[style\]|\[template\]",
                "control": r"\[control\]|\[override\]|\[skip\]"
            }
        }

    def check_retrieval(self, context: RetrievalContext) -> GuardResult:
        """Perform security checks on retrieval operation"""
        try:
            checks_passed = []
            checks_failed = []
            risks = []
            filtered_content = []

            # Check relevance
            relevance_result = self._check_relevance(context)
            self._process_check_result(
                relevance_result,
                checks_passed,
                checks_failed,
                risks
            )

            # Check consistency
            consistency_result = self._check_consistency(context)
            self._process_check_result(
                consistency_result,
                checks_passed,
                checks_failed,
                risks
            )

            # Check privacy
            privacy_result = self._check_privacy(context)
            self._process_check_result(
                privacy_result,
                checks_passed,
                checks_failed,
                risks
            )

            # Check for injection attempts
            injection_result = self._check_injection(context)
            self._process_check_result(
                injection_result,
                checks_passed,
                checks_failed,
                risks
            )

            # Check chunking
            chunking_result = self._check_chunking(context)
            self._process_check_result(
                chunking_result,
                checks_passed,
                checks_failed,
                risks
            )

            # Filter content based on check results
            filtered_content = self._filter_content(context, risks)

            # Create result
            result = GuardResult(
                is_safe=len(checks_failed) == 0,
                checks_passed=checks_passed,
                checks_failed=checks_failed,
                risks=list(set(risks)),
                filtered_content=filtered_content,
                metadata={
                    "timestamp": datetime.utcnow().isoformat(),
                    "original_count": len(context.retrieved_content),
                    "filtered_count": len(filtered_content),
                    "risk_count": len(risks)
                }
            )

            # Log result
            if not result.is_safe and self.security_logger:
                self.security_logger.log_security_event(
                    "retrieval_guard_alert",
                    checks_failed=checks_failed,
                    risks=[r.value for r in risks],
                    filtered_ratio=len(filtered_content)/len(context.retrieved_content)
                )

            self.check_history.append(result)
            return result

        except Exception as e:
            if self.security_logger:
                self.security_logger.log_security_event(
                    "retrieval_guard_error",
                    error=str(e)
                )
            raise SecurityError(f"Retrieval guard check failed: {str(e)}")

    def _check_relevance(self, context: RetrievalContext) -> CheckResult:
        """Check relevance between query and retrieved content"""
        relevance_scores = []
        
        # Calculate cosine similarity between query and each retrieved embedding
        for emb in context.retrieved_embeddings:
            score = float(np.dot(
                context.query_embedding,
                emb
            ) / (
                np.linalg.norm(context.query_embedding) * 
                np.linalg.norm(emb)
            ))
            relevance_scores.append(score)

        avg_relevance = np.mean(relevance_scores)
        check = self.security_checks["relevance"]
        
        return CheckResult(
            check_name=check.name,
            passed=avg_relevance >= check.threshold,
            risk_level=1.0 - avg_relevance,
            details={
                "average_relevance": float(avg_relevance),
                "min_relevance": float(min(relevance_scores)),
                "max_relevance": float(max(relevance_scores))
            },
            recommendations=[
                "Adjust retrieval threshold",
                "Implement semantic filtering",
                "Review chunking strategy"
            ] if avg_relevance < check.threshold else []
        )

    def _check_consistency(self, context: RetrievalContext) -> CheckResult:
        """Check consistency among retrieved chunks"""
        consistency_scores = []
        
        # Calculate pairwise similarities between retrieved embeddings
        for i in range(len(context.retrieved_embeddings)):
            for j in range(i + 1, len(context.retrieved_embeddings)):
                score = float(np.dot(
                    context.retrieved_embeddings[i],
                    context.retrieved_embeddings[j]
                ) / (
                    np.linalg.norm(context.retrieved_embeddings[i]) * 
                    np.linalg.norm(context.retrieved_embeddings[j])
                ))
                consistency_scores.append(score)

        avg_consistency = np.mean(consistency_scores) if consistency_scores else 0
        check = self.security_checks["consistency"]
        
        return CheckResult(
            check_name=check.name,
            passed=avg_consistency >= check.threshold,
            risk_level=1.0 - avg_consistency,
            details={
                "average_consistency": float(avg_consistency),
                "min_consistency": float(min(consistency_scores)) if consistency_scores else 0,
                "max_consistency": float(max(consistency_scores)) if consistency_scores else 0
            },
            recommendations=[
                "Review chunk coherence",
                "Adjust chunk size",
                "Implement overlap detection"
            ] if avg_consistency < check.threshold else []
        )

    def _check_privacy(self, context: RetrievalContext) -> CheckResult:
        """Check for potential privacy leaks"""
        privacy_violations = defaultdict(list)
        
        for idx, content in enumerate(context.retrieved_content):
            for pattern_name, pattern in self.risk_patterns["privacy_patterns"].items():
                matches = re.finditer(pattern, content)
                for match in matches:
                    privacy_violations[pattern_name].append((idx, match.group()))

        check = self.security_checks["privacy"]
        violation_count = sum(len(v) for v in privacy_violations.values())
        risk_level = min(1.0, violation_count / len(context.retrieved_content))
        
        return CheckResult(
            check_name=check.name,
            passed=risk_level < (1 - check.threshold),
            risk_level=risk_level,
            details={
                "violation_count": violation_count,
                "violation_types": list(privacy_violations.keys()),
                "affected_chunks": list(set(
                    idx for violations in privacy_violations.values() 
                    for idx, _ in violations
                ))
            },
            recommendations=[
                "Implement data masking",
                "Add privacy filters",
                "Review content preprocessing"
            ] if violation_count > 0 else []
        )

    def _check_injection(self, context: RetrievalContext) -> CheckResult:
        """Check for context injection attempts"""
        injection_attempts = defaultdict(list)
        
        for idx, content in enumerate(context.retrieved_content):
            for pattern_name, pattern in self.risk_patterns["injection_patterns"].items():
                matches = re.finditer(pattern, content)
                for match in matches:
                    injection_attempts[pattern_name].append((idx, match.group()))

        check = self.security_checks["injection"]
        attempt_count = sum(len(v) for v in injection_attempts.values())
        risk_level = min(1.0, attempt_count / len(context.retrieved_content))
        
        return CheckResult(
            check_name=check.name,
            passed=risk_level < (1 - check.threshold),
            risk_level=risk_level,
            details={
                "attempt_count": attempt_count,
                "attempt_types": list(injection_attempts.keys()),
                "affected_chunks": list(set(
                    idx for attempts in injection_attempts.values() 
                    for idx, _ in attempts
                ))
            },
            recommendations=[
                "Enhance input sanitization",
                "Implement content filtering",
                "Add injection detection"
            ] if attempt_count > 0 else []
        )

    def _check_chunking(self, context: RetrievalContext) -> CheckResult:
        """Check for chunking manipulation"""
        manipulation_attempts = defaultdict(list)
        chunk_sizes = [len(content) for content in context.retrieved_content]
        
        # Check for suspicious patterns
        for idx, content in enumerate(context.retrieved_content):
            for pattern_name, pattern in self.risk_patterns["manipulation_patterns"].items():
                matches = re.finditer(pattern, content)
                for match in matches:
                    manipulation_attempts[pattern_name].append((idx, match.group()))

        # Analyze chunk size distribution
        mean_size = np.mean(chunk_sizes)
        std_size = np.std(chunk_sizes)
        suspicious_chunks = [
            idx for idx, size in enumerate(chunk_sizes)
            if abs(size - mean_size) > 2 * std_size
        ]

        check = self.security_checks["chunking"]
        violation_count = len(suspicious_chunks) + sum(len(v) for v in manipulation_attempts.values())
        risk_level = min(1.0, violation_count / len(context.retrieved_content))
        
        return CheckResult(
            check_name=check.name,
            passed=risk_level < (1 - check.threshold),
            risk_level=risk_level,
            details={
                "violation_count": violation_count,
                "suspicious_chunks": suspicious_chunks,
                "manipulation_types": list(manipulation_attempts.keys()),
                "chunk_stats": {
                    "mean_size": float(mean_size),
                    "std_size": float(std_size),
                    "min_size": min(chunk_sizes),
                    "max_size": max(chunk_sizes)
                }
            },
            recommendations=[
                "Review chunking strategy",
                "Implement size normalization",
                "Add pattern detection"
            ] if violation_count > 0 else []
        )

    def _process_check_result(self, 
                            result: CheckResult,
                            checks_passed: List[str],
                            checks_failed: List[str],
                            risks: List[RetrievalRisk]):
        """Process check result and update tracking lists"""
        if result.passed:
            checks_passed.append(result.check_name)
        else:
            checks_failed.append(result.check_name)
            # Map check names to risks
            risk_mapping = {
                "relevance_check": RetrievalRisk.RELEVANCE_MANIPULATION,
                "consistency_check": RetrievalRisk.CONTEXT_INJECTION,
                "privacy_check": RetrievalRisk.PRIVACY_LEAK,
                "injection_check": RetrievalRisk.CONTEXT_INJECTION,
                "chunking_check": RetrievalRisk.CHUNKING_MANIPULATION
            }
            if result.check_name in risk_mapping:
                risks.append(risk_mapping[result.check_name])

            # Log failed check if logger is available
            if self.security_logger:
                self.security_logger.log_security_event(
                    "retrieval_check_failed",
                    check_name=result.check_name,
                    risk_level=result.risk_level,
                    details=result.details
                )

    def _check_chunking(self, context: RetrievalContext) -> CheckResult:
        """Check for chunking manipulation and anomalies"""
        check = self.security_checks["chunking"]
        manipulation_attempts = defaultdict(list)
        anomalies = []

        # Get chunk statistics
        chunk_sizes = [len(content) for content in context.retrieved_content]
        chunk_mean = np.mean(chunk_sizes)
        chunk_std = np.std(chunk_sizes)

        # Check each chunk for issues
        for idx, content in enumerate(context.retrieved_content):
            # Check size anomalies
            if abs(len(content) - chunk_mean) > 2 * chunk_std:
                anomalies.append(("size_anomaly", idx))

            # Check for manipulation patterns
            for pattern_name, pattern in self.risk_patterns["manipulation_patterns"].items():
                if matches := list(re.finditer(pattern, content)):
                    manipulation_attempts[pattern_name].extend(
                        (idx, match.group()) for match in matches
                    )

            # Check for content repetition
            if self._detect_repetition(content):
                anomalies.append(("repetition", idx))

            # Check for suspicious formatting
            if self._detect_suspicious_formatting(content):
                anomalies.append(("suspicious_formatting", idx))

        # Calculate risk metrics
        total_issues = len(anomalies) + sum(len(attempts) for attempts in manipulation_attempts.values())
        risk_level = min(1.0, total_issues / (len(context.retrieved_content) * 2))

        # Generate recommendations based on findings
        recommendations = []
        if anomalies:
            recommendations.append("Review chunk size distribution and normalization")
        if manipulation_attempts:
            recommendations.append("Implement stricter content validation")
            recommendations.append("Add pattern-based filtering")
        if risk_level > 0.5:
            recommendations.append("Consider reducing chunk size variance")

        return CheckResult(
            check_name=check.name,
            passed=risk_level < (1 - check.threshold),
            risk_level=risk_level,
            details={
                "anomalies": [{"type": a_type, "chunk_index": idx} for a_type, idx in anomalies],
                "manipulation_attempts": {
                    pattern: [{"chunk_index": idx, "content": content} 
                            for idx, content in attempts]
                    for pattern, attempts in manipulation_attempts.items()
                },
                "chunk_stats": {
                    "mean_size": float(chunk_mean),
                    "std_size": float(chunk_std),
                    "size_range": (int(min(chunk_sizes)), int(max(chunk_sizes))),
                    "total_chunks": len(context.retrieved_content)
                }
            },
            recommendations=recommendations
        )

    def _detect_repetition(self, content: str) -> bool:
        """Detect suspicious content repetition"""
        # Check for repeated phrases (50+ characters)
        repetition_pattern = r'(.{50,}?)\1+'
        if re.search(repetition_pattern, content):
            return True

        # Check for unusual character repetition
        char_counts = defaultdict(int)
        for char in content:
            char_counts[char] += 1
        
        total_chars = len(content)
        for count in char_counts.values():
            if count > total_chars * 0.3:  # More than 30% of same character
                return True

        return False

    def _detect_suspicious_formatting(self, content: str) -> bool:
        """Detect suspicious content formatting"""
        suspicious_patterns = [
            r'\[(?:format|style|template)\]',  # Format tags
            r'\{(?:format|style|template)\}',  # Format braces
            r'<(?:format|style|template)>',    # Format HTML-style tags
            r'\\[nr]{10,}',                    # Excessive newlines/returns
            r'\s{10,}',                        # Excessive whitespace
            r'[^\w\s]{10,}'                    # Excessive special characters
        ]

        return any(re.search(pattern, content) for pattern in suspicious_patterns)

    def _filter_content(self, 
                       context: RetrievalContext,
                       risks: List[RetrievalRisk]) -> List[str]:
        """Filter retrieved content based on detected risks"""
        filtered_content = []
        skip_indices = set()

        # Collect indices to skip based on risks
        for risk in risks:
            if risk == RetrievalRisk.PRIVACY_LEAK:
                # Skip chunks with privacy violations
                skip_indices.update(self._find_privacy_violations(context))
            elif risk == RetrievalRisk.CONTEXT_INJECTION:
                # Skip chunks with injection attempts
                skip_indices.update(self._find_injection_attempts(context))
            elif risk == RetrievalRisk.RELEVANCE_MANIPULATION:
                # Skip irrelevant chunks
                skip_indices.update(self._find_irrelevant_chunks(context))

        # Filter content
        for idx, content in enumerate(context.retrieved_content):
            if idx not in skip_indices:
                # Apply any necessary sanitization
                sanitized = self._sanitize_content(content)
                if sanitized:
                    filtered_content.append(sanitized)

        return filtered_content

    def _find_privacy_violations(self, context: RetrievalContext) -> Set[int]:
        """Find chunks containing privacy violations"""
        violation_indices = set()
        
        for idx, content in enumerate(context.retrieved_content):
            for pattern in self.risk_patterns["privacy_patterns"].values():
                if re.search(pattern, content):
                    violation_indices.add(idx)
                    break
                    
        return violation_indices

    def _find_injection_attempts(self, context: RetrievalContext) -> Set[int]:
        """Find chunks containing injection attempts"""
        injection_indices = set()
        
        for idx, content in enumerate(context.retrieved_content):
            for pattern in self.risk_patterns["injection_patterns"].values():
                if re.search(pattern, content):
                    injection_indices.add(idx)
                    break
                    
        return injection_indices

    def _find_irrelevant_chunks(self, context: RetrievalContext) -> Set[int]:
        """Find irrelevant chunks based on similarity"""
        irrelevant_indices = set()
        threshold = self.security_checks["relevance"].threshold
        
        for idx, emb in enumerate(context.retrieved_embeddings):
            similarity = float(np.dot(
                context.query_embedding,
                emb
            ) / (
                np.linalg.norm(context.query_embedding) * 
                np.linalg.norm(emb)
            ))
            if similarity < threshold:
                irrelevant_indices.add(idx)
                
        return irrelevant_indices

    def _sanitize_content(self, content: str) -> Optional[str]:
        """Sanitize content by removing or masking sensitive information"""
        sanitized = content

        # Mask privacy-sensitive information
        for pattern in self.risk_patterns["privacy_patterns"].values():
            sanitized = re.sub(pattern, "[REDACTED]", sanitized)

        # Remove injection attempts
        for pattern in self.risk_patterns["injection_patterns"].values():
            sanitized = re.sub(pattern, "", sanitized)

        # Remove manipulation attempts
        for pattern in self.risk_patterns["manipulation_patterns"].values():
            sanitized = re.sub(pattern, "", sanitized)

        # Clean up whitespace
        sanitized = " ".join(sanitized.split())
        
        return sanitized if sanitized.strip() else None

    def update_security_checks(self, updates: Dict[str, SecurityCheck]):
        """Update security check configurations"""
        self.security_checks.update(updates)

    def update_risk_patterns(self, updates: Dict[str, Dict[str, str]]):
        """Update risk detection patterns"""
        for category, patterns in updates.items():
            if category in self.risk_patterns:
                self.risk_patterns[category].update(patterns)
            else:
                self.risk_patterns[category] = patterns

    def get_check_history(self) -> List[Dict[str, Any]]:
        """Get history of guard check results"""
        return [
            {
                "timestamp": result.metadata["timestamp"],
                "is_safe": result.is_safe,
                "checks_passed": result.checks_passed,
                "checks_failed": result.checks_failed,
                "risks": [risk.value for risk in result.risks],
                "filtered_ratio": result.metadata["filtered_count"] / 
                                result.metadata["original_count"]
            }
            for result in self.check_history
        ]

    def clear_history(self):
        """Clear check history"""
        self.check_history.clear()

    def add_security_check(self, name: str, check: SecurityCheck):
        """Add a new security check"""
        self.security_checks[name] = check

    def remove_security_check(self, name: str):
        """Remove a security check"""
        self.security_checks.pop(name, None)

    def analyze_patterns(self) -> Dict[str, Any]:
        """Analyze detection patterns effectiveness"""
        pattern_stats = {
            "privacy": defaultdict(int),
            "injection": defaultdict(int),
            "manipulation": defaultdict(int)
        }
        
        for result in self.check_history:
            if not result.is_safe:
                for risk in result.risks:
                    if risk == RetrievalRisk.PRIVACY_LEAK:
                        for pattern in self.risk_patterns["privacy_patterns"]:
                            pattern_stats["privacy"][pattern] += 1
                    elif risk == RetrievalRisk.CONTEXT_INJECTION:
                        for pattern in self.risk_patterns["injection_patterns"]:
                            pattern_stats["injection"][pattern] += 1
                    elif risk == RetrievalRisk.CHUNKING_MANIPULATION:
                        for pattern in self.risk_patterns["manipulation_patterns"]:
                            pattern_stats["manipulation"][pattern] += 1

        return {
            "total_checks": len(self.check_history),
            "pattern_matches": dict(pattern_stats),
            "pattern_effectiveness": {
                category: {
                    pattern: count / len(self.check_history)
                    for pattern, count in patterns.items()
                }
                for category, patterns in pattern_stats.items()
            }
        }

    def get_recommendations(self) -> List[Dict[str, Any]]:
        """Get security recommendations based on check history"""
        if not self.check_history:
            return []

        recommendations = []
        risk_counts = defaultdict(int)
        total_checks = len(self.check_history)

        # Count risk occurrences
        for result in self.check_history:
            for risk in result.risks:
                risk_counts[risk] += 1

        # Generate recommendations
        for risk, count in risk_counts.items():
            frequency = count / total_checks
            if frequency > 0.1:  # More than 10% occurrence
                recommendations.append({
                    "risk": risk.value,
                    "frequency": frequency,
                    "severity": "high" if frequency > 0.5 else "medium",
                    "recommendations": self._get_risk_recommendations(risk)
                })

        return recommendations

    def _get_risk_recommendations(self, risk: RetrievalRisk) -> List[str]:
        """Get recommendations for specific risk"""
        recommendations = {
            RetrievalRisk.PRIVACY_LEAK: [
                "Implement stronger data masking",
                "Add privacy-focused preprocessing",
                "Review data handling policies"
            ],
            RetrievalRisk.CONTEXT_INJECTION: [
                "Enhance input validation",
                "Implement context boundaries",
                "Add injection detection"
            ],
            RetrievalRisk.RELEVANCE_MANIPULATION: [
                "Adjust similarity thresholds",
                "Implement semantic filtering",
                "Review retrieval strategy"
            ],
            RetrievalRisk.CHUNKING_MANIPULATION: [
                "Standardize chunk sizes",
                "Add chunk validation",
                "Implement overlap detection"
            ]
        }
        return recommendations.get(risk, [])