Spaces:
Configuration error
Configuration error
File size: 29,352 Bytes
ba92f0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
"""
vectors/retrieval_guard.py - Security for Retrieval-Augmented Generation (RAG) operations
"""
import numpy as np
from typing import Dict, List, Optional, Any, Tuple, Set
from dataclasses import dataclass
from datetime import datetime
from enum import Enum
import hashlib
import re
from collections import defaultdict
from ..core.logger import SecurityLogger
from ..core.exceptions import SecurityError
class RetrievalRisk(Enum):
"""Types of retrieval-related risks"""
RELEVANCE_MANIPULATION = "relevance_manipulation"
CONTEXT_INJECTION = "context_injection"
DATA_POISONING = "data_poisoning"
RETRIEVAL_BYPASS = "retrieval_bypass"
PRIVACY_LEAK = "privacy_leak"
EMBEDDING_ATTACK = "embedding_attack"
CHUNKING_MANIPULATION = "chunking_manipulation"
@dataclass
class RetrievalContext:
"""Context for retrieval operations"""
query_embedding: np.ndarray
retrieved_embeddings: List[np.ndarray]
retrieved_content: List[str]
metadata: Optional[Dict[str, Any]] = None
source: Optional[str] = None
@dataclass
class SecurityCheck:
"""Security check definition"""
name: str
description: str
threshold: float
severity: int # 1-10
@dataclass
class CheckResult:
"""Result of a security check"""
check_name: str
passed: bool
risk_level: float
details: Dict[str, Any]
recommendations: List[str]
@dataclass
class GuardResult:
"""Complete result of retrieval guard checks"""
is_safe: bool
checks_passed: List[str]
checks_failed: List[str]
risks: List[RetrievalRisk]
filtered_content: List[str]
metadata: Dict[str, Any]
class RetrievalGuard:
"""Security guard for RAG operations"""
def __init__(self, security_logger: Optional[SecurityLogger] = None):
self.security_logger = security_logger
self.security_checks = self._initialize_security_checks()
self.risk_patterns = self._initialize_risk_patterns()
self.check_history: List[GuardResult] = []
def _initialize_security_checks(self) -> Dict[str, SecurityCheck]:
"""Initialize security checks"""
return {
"relevance": SecurityCheck(
name="relevance_check",
description="Check relevance between query and retrieved content",
threshold=0.7,
severity=7
),
"consistency": SecurityCheck(
name="consistency_check",
description="Check consistency among retrieved chunks",
threshold=0.6,
severity=6
),
"privacy": SecurityCheck(
name="privacy_check",
description="Check for potential privacy leaks",
threshold=0.8,
severity=9
),
"injection": SecurityCheck(
name="injection_check",
description="Check for context injection attempts",
threshold=0.75,
severity=8
),
"chunking": SecurityCheck(
name="chunking_check",
description="Check for chunking manipulation",
threshold=0.65,
severity=6
)
}
def _initialize_risk_patterns(self) -> Dict[str, Any]:
"""Initialize risk detection patterns"""
return {
"privacy_patterns": {
"pii": r"\b\d{3}-\d{2}-\d{4}\b", # SSN
"email": r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b",
"credit_card": r"\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b",
"api_key": r"\b([A-Za-z0-9]{32,})\b"
},
"injection_patterns": {
"system_prompt": r"system:\s*|instruction:\s*",
"delimiter": r"[<\[{](?:system|prompt|instruction)[>\]}]",
"escape": r"\\n|\\r|\\t|\\b|\\f"
},
"manipulation_patterns": {
"repetition": r"(.{50,}?)\1{2,}",
"formatting": r"\[format\]|\[style\]|\[template\]",
"control": r"\[control\]|\[override\]|\[skip\]"
}
}
def check_retrieval(self, context: RetrievalContext) -> GuardResult:
"""Perform security checks on retrieval operation"""
try:
checks_passed = []
checks_failed = []
risks = []
filtered_content = []
# Check relevance
relevance_result = self._check_relevance(context)
self._process_check_result(
relevance_result,
checks_passed,
checks_failed,
risks
)
# Check consistency
consistency_result = self._check_consistency(context)
self._process_check_result(
consistency_result,
checks_passed,
checks_failed,
risks
)
# Check privacy
privacy_result = self._check_privacy(context)
self._process_check_result(
privacy_result,
checks_passed,
checks_failed,
risks
)
# Check for injection attempts
injection_result = self._check_injection(context)
self._process_check_result(
injection_result,
checks_passed,
checks_failed,
risks
)
# Check chunking
chunking_result = self._check_chunking(context)
self._process_check_result(
chunking_result,
checks_passed,
checks_failed,
risks
)
# Filter content based on check results
filtered_content = self._filter_content(context, risks)
# Create result
result = GuardResult(
is_safe=len(checks_failed) == 0,
checks_passed=checks_passed,
checks_failed=checks_failed,
risks=list(set(risks)),
filtered_content=filtered_content,
metadata={
"timestamp": datetime.utcnow().isoformat(),
"original_count": len(context.retrieved_content),
"filtered_count": len(filtered_content),
"risk_count": len(risks)
}
)
# Log result
if not result.is_safe and self.security_logger:
self.security_logger.log_security_event(
"retrieval_guard_alert",
checks_failed=checks_failed,
risks=[r.value for r in risks],
filtered_ratio=len(filtered_content)/len(context.retrieved_content)
)
self.check_history.append(result)
return result
except Exception as e:
if self.security_logger:
self.security_logger.log_security_event(
"retrieval_guard_error",
error=str(e)
)
raise SecurityError(f"Retrieval guard check failed: {str(e)}")
def _check_relevance(self, context: RetrievalContext) -> CheckResult:
"""Check relevance between query and retrieved content"""
relevance_scores = []
# Calculate cosine similarity between query and each retrieved embedding
for emb in context.retrieved_embeddings:
score = float(np.dot(
context.query_embedding,
emb
) / (
np.linalg.norm(context.query_embedding) *
np.linalg.norm(emb)
))
relevance_scores.append(score)
avg_relevance = np.mean(relevance_scores)
check = self.security_checks["relevance"]
return CheckResult(
check_name=check.name,
passed=avg_relevance >= check.threshold,
risk_level=1.0 - avg_relevance,
details={
"average_relevance": float(avg_relevance),
"min_relevance": float(min(relevance_scores)),
"max_relevance": float(max(relevance_scores))
},
recommendations=[
"Adjust retrieval threshold",
"Implement semantic filtering",
"Review chunking strategy"
] if avg_relevance < check.threshold else []
)
def _check_consistency(self, context: RetrievalContext) -> CheckResult:
"""Check consistency among retrieved chunks"""
consistency_scores = []
# Calculate pairwise similarities between retrieved embeddings
for i in range(len(context.retrieved_embeddings)):
for j in range(i + 1, len(context.retrieved_embeddings)):
score = float(np.dot(
context.retrieved_embeddings[i],
context.retrieved_embeddings[j]
) / (
np.linalg.norm(context.retrieved_embeddings[i]) *
np.linalg.norm(context.retrieved_embeddings[j])
))
consistency_scores.append(score)
avg_consistency = np.mean(consistency_scores) if consistency_scores else 0
check = self.security_checks["consistency"]
return CheckResult(
check_name=check.name,
passed=avg_consistency >= check.threshold,
risk_level=1.0 - avg_consistency,
details={
"average_consistency": float(avg_consistency),
"min_consistency": float(min(consistency_scores)) if consistency_scores else 0,
"max_consistency": float(max(consistency_scores)) if consistency_scores else 0
},
recommendations=[
"Review chunk coherence",
"Adjust chunk size",
"Implement overlap detection"
] if avg_consistency < check.threshold else []
)
def _check_privacy(self, context: RetrievalContext) -> CheckResult:
"""Check for potential privacy leaks"""
privacy_violations = defaultdict(list)
for idx, content in enumerate(context.retrieved_content):
for pattern_name, pattern in self.risk_patterns["privacy_patterns"].items():
matches = re.finditer(pattern, content)
for match in matches:
privacy_violations[pattern_name].append((idx, match.group()))
check = self.security_checks["privacy"]
violation_count = sum(len(v) for v in privacy_violations.values())
risk_level = min(1.0, violation_count / len(context.retrieved_content))
return CheckResult(
check_name=check.name,
passed=risk_level < (1 - check.threshold),
risk_level=risk_level,
details={
"violation_count": violation_count,
"violation_types": list(privacy_violations.keys()),
"affected_chunks": list(set(
idx for violations in privacy_violations.values()
for idx, _ in violations
))
},
recommendations=[
"Implement data masking",
"Add privacy filters",
"Review content preprocessing"
] if violation_count > 0 else []
)
def _check_injection(self, context: RetrievalContext) -> CheckResult:
"""Check for context injection attempts"""
injection_attempts = defaultdict(list)
for idx, content in enumerate(context.retrieved_content):
for pattern_name, pattern in self.risk_patterns["injection_patterns"].items():
matches = re.finditer(pattern, content)
for match in matches:
injection_attempts[pattern_name].append((idx, match.group()))
check = self.security_checks["injection"]
attempt_count = sum(len(v) for v in injection_attempts.values())
risk_level = min(1.0, attempt_count / len(context.retrieved_content))
return CheckResult(
check_name=check.name,
passed=risk_level < (1 - check.threshold),
risk_level=risk_level,
details={
"attempt_count": attempt_count,
"attempt_types": list(injection_attempts.keys()),
"affected_chunks": list(set(
idx for attempts in injection_attempts.values()
for idx, _ in attempts
))
},
recommendations=[
"Enhance input sanitization",
"Implement content filtering",
"Add injection detection"
] if attempt_count > 0 else []
)
def _check_chunking(self, context: RetrievalContext) -> CheckResult:
"""Check for chunking manipulation"""
manipulation_attempts = defaultdict(list)
chunk_sizes = [len(content) for content in context.retrieved_content]
# Check for suspicious patterns
for idx, content in enumerate(context.retrieved_content):
for pattern_name, pattern in self.risk_patterns["manipulation_patterns"].items():
matches = re.finditer(pattern, content)
for match in matches:
manipulation_attempts[pattern_name].append((idx, match.group()))
# Analyze chunk size distribution
mean_size = np.mean(chunk_sizes)
std_size = np.std(chunk_sizes)
suspicious_chunks = [
idx for idx, size in enumerate(chunk_sizes)
if abs(size - mean_size) > 2 * std_size
]
check = self.security_checks["chunking"]
violation_count = len(suspicious_chunks) + sum(len(v) for v in manipulation_attempts.values())
risk_level = min(1.0, violation_count / len(context.retrieved_content))
return CheckResult(
check_name=check.name,
passed=risk_level < (1 - check.threshold),
risk_level=risk_level,
details={
"violation_count": violation_count,
"suspicious_chunks": suspicious_chunks,
"manipulation_types": list(manipulation_attempts.keys()),
"chunk_stats": {
"mean_size": float(mean_size),
"std_size": float(std_size),
"min_size": min(chunk_sizes),
"max_size": max(chunk_sizes)
}
},
recommendations=[
"Review chunking strategy",
"Implement size normalization",
"Add pattern detection"
] if violation_count > 0 else []
)
def _process_check_result(self,
result: CheckResult,
checks_passed: List[str],
checks_failed: List[str],
risks: List[RetrievalRisk]):
"""Process check result and update tracking lists"""
if result.passed:
checks_passed.append(result.check_name)
else:
checks_failed.append(result.check_name)
# Map check names to risks
risk_mapping = {
"relevance_check": RetrievalRisk.RELEVANCE_MANIPULATION,
"consistency_check": RetrievalRisk.CONTEXT_INJECTION,
"privacy_check": RetrievalRisk.PRIVACY_LEAK,
"injection_check": RetrievalRisk.CONTEXT_INJECTION,
"chunking_check": RetrievalRisk.CHUNKING_MANIPULATION
}
if result.check_name in risk_mapping:
risks.append(risk_mapping[result.check_name])
# Log failed check if logger is available
if self.security_logger:
self.security_logger.log_security_event(
"retrieval_check_failed",
check_name=result.check_name,
risk_level=result.risk_level,
details=result.details
)
def _check_chunking(self, context: RetrievalContext) -> CheckResult:
"""Check for chunking manipulation and anomalies"""
check = self.security_checks["chunking"]
manipulation_attempts = defaultdict(list)
anomalies = []
# Get chunk statistics
chunk_sizes = [len(content) for content in context.retrieved_content]
chunk_mean = np.mean(chunk_sizes)
chunk_std = np.std(chunk_sizes)
# Check each chunk for issues
for idx, content in enumerate(context.retrieved_content):
# Check size anomalies
if abs(len(content) - chunk_mean) > 2 * chunk_std:
anomalies.append(("size_anomaly", idx))
# Check for manipulation patterns
for pattern_name, pattern in self.risk_patterns["manipulation_patterns"].items():
if matches := list(re.finditer(pattern, content)):
manipulation_attempts[pattern_name].extend(
(idx, match.group()) for match in matches
)
# Check for content repetition
if self._detect_repetition(content):
anomalies.append(("repetition", idx))
# Check for suspicious formatting
if self._detect_suspicious_formatting(content):
anomalies.append(("suspicious_formatting", idx))
# Calculate risk metrics
total_issues = len(anomalies) + sum(len(attempts) for attempts in manipulation_attempts.values())
risk_level = min(1.0, total_issues / (len(context.retrieved_content) * 2))
# Generate recommendations based on findings
recommendations = []
if anomalies:
recommendations.append("Review chunk size distribution and normalization")
if manipulation_attempts:
recommendations.append("Implement stricter content validation")
recommendations.append("Add pattern-based filtering")
if risk_level > 0.5:
recommendations.append("Consider reducing chunk size variance")
return CheckResult(
check_name=check.name,
passed=risk_level < (1 - check.threshold),
risk_level=risk_level,
details={
"anomalies": [{"type": a_type, "chunk_index": idx} for a_type, idx in anomalies],
"manipulation_attempts": {
pattern: [{"chunk_index": idx, "content": content}
for idx, content in attempts]
for pattern, attempts in manipulation_attempts.items()
},
"chunk_stats": {
"mean_size": float(chunk_mean),
"std_size": float(chunk_std),
"size_range": (int(min(chunk_sizes)), int(max(chunk_sizes))),
"total_chunks": len(context.retrieved_content)
}
},
recommendations=recommendations
)
def _detect_repetition(self, content: str) -> bool:
"""Detect suspicious content repetition"""
# Check for repeated phrases (50+ characters)
repetition_pattern = r'(.{50,}?)\1+'
if re.search(repetition_pattern, content):
return True
# Check for unusual character repetition
char_counts = defaultdict(int)
for char in content:
char_counts[char] += 1
total_chars = len(content)
for count in char_counts.values():
if count > total_chars * 0.3: # More than 30% of same character
return True
return False
def _detect_suspicious_formatting(self, content: str) -> bool:
"""Detect suspicious content formatting"""
suspicious_patterns = [
r'\[(?:format|style|template)\]', # Format tags
r'\{(?:format|style|template)\}', # Format braces
r'<(?:format|style|template)>', # Format HTML-style tags
r'\\[nr]{10,}', # Excessive newlines/returns
r'\s{10,}', # Excessive whitespace
r'[^\w\s]{10,}' # Excessive special characters
]
return any(re.search(pattern, content) for pattern in suspicious_patterns)
def _filter_content(self,
context: RetrievalContext,
risks: List[RetrievalRisk]) -> List[str]:
"""Filter retrieved content based on detected risks"""
filtered_content = []
skip_indices = set()
# Collect indices to skip based on risks
for risk in risks:
if risk == RetrievalRisk.PRIVACY_LEAK:
# Skip chunks with privacy violations
skip_indices.update(self._find_privacy_violations(context))
elif risk == RetrievalRisk.CONTEXT_INJECTION:
# Skip chunks with injection attempts
skip_indices.update(self._find_injection_attempts(context))
elif risk == RetrievalRisk.RELEVANCE_MANIPULATION:
# Skip irrelevant chunks
skip_indices.update(self._find_irrelevant_chunks(context))
# Filter content
for idx, content in enumerate(context.retrieved_content):
if idx not in skip_indices:
# Apply any necessary sanitization
sanitized = self._sanitize_content(content)
if sanitized:
filtered_content.append(sanitized)
return filtered_content
def _find_privacy_violations(self, context: RetrievalContext) -> Set[int]:
"""Find chunks containing privacy violations"""
violation_indices = set()
for idx, content in enumerate(context.retrieved_content):
for pattern in self.risk_patterns["privacy_patterns"].values():
if re.search(pattern, content):
violation_indices.add(idx)
break
return violation_indices
def _find_injection_attempts(self, context: RetrievalContext) -> Set[int]:
"""Find chunks containing injection attempts"""
injection_indices = set()
for idx, content in enumerate(context.retrieved_content):
for pattern in self.risk_patterns["injection_patterns"].values():
if re.search(pattern, content):
injection_indices.add(idx)
break
return injection_indices
def _find_irrelevant_chunks(self, context: RetrievalContext) -> Set[int]:
"""Find irrelevant chunks based on similarity"""
irrelevant_indices = set()
threshold = self.security_checks["relevance"].threshold
for idx, emb in enumerate(context.retrieved_embeddings):
similarity = float(np.dot(
context.query_embedding,
emb
) / (
np.linalg.norm(context.query_embedding) *
np.linalg.norm(emb)
))
if similarity < threshold:
irrelevant_indices.add(idx)
return irrelevant_indices
def _sanitize_content(self, content: str) -> Optional[str]:
"""Sanitize content by removing or masking sensitive information"""
sanitized = content
# Mask privacy-sensitive information
for pattern in self.risk_patterns["privacy_patterns"].values():
sanitized = re.sub(pattern, "[REDACTED]", sanitized)
# Remove injection attempts
for pattern in self.risk_patterns["injection_patterns"].values():
sanitized = re.sub(pattern, "", sanitized)
# Remove manipulation attempts
for pattern in self.risk_patterns["manipulation_patterns"].values():
sanitized = re.sub(pattern, "", sanitized)
# Clean up whitespace
sanitized = " ".join(sanitized.split())
return sanitized if sanitized.strip() else None
def update_security_checks(self, updates: Dict[str, SecurityCheck]):
"""Update security check configurations"""
self.security_checks.update(updates)
def update_risk_patterns(self, updates: Dict[str, Dict[str, str]]):
"""Update risk detection patterns"""
for category, patterns in updates.items():
if category in self.risk_patterns:
self.risk_patterns[category].update(patterns)
else:
self.risk_patterns[category] = patterns
def get_check_history(self) -> List[Dict[str, Any]]:
"""Get history of guard check results"""
return [
{
"timestamp": result.metadata["timestamp"],
"is_safe": result.is_safe,
"checks_passed": result.checks_passed,
"checks_failed": result.checks_failed,
"risks": [risk.value for risk in result.risks],
"filtered_ratio": result.metadata["filtered_count"] /
result.metadata["original_count"]
}
for result in self.check_history
]
def clear_history(self):
"""Clear check history"""
self.check_history.clear()
def add_security_check(self, name: str, check: SecurityCheck):
"""Add a new security check"""
self.security_checks[name] = check
def remove_security_check(self, name: str):
"""Remove a security check"""
self.security_checks.pop(name, None)
def analyze_patterns(self) -> Dict[str, Any]:
"""Analyze detection patterns effectiveness"""
pattern_stats = {
"privacy": defaultdict(int),
"injection": defaultdict(int),
"manipulation": defaultdict(int)
}
for result in self.check_history:
if not result.is_safe:
for risk in result.risks:
if risk == RetrievalRisk.PRIVACY_LEAK:
for pattern in self.risk_patterns["privacy_patterns"]:
pattern_stats["privacy"][pattern] += 1
elif risk == RetrievalRisk.CONTEXT_INJECTION:
for pattern in self.risk_patterns["injection_patterns"]:
pattern_stats["injection"][pattern] += 1
elif risk == RetrievalRisk.CHUNKING_MANIPULATION:
for pattern in self.risk_patterns["manipulation_patterns"]:
pattern_stats["manipulation"][pattern] += 1
return {
"total_checks": len(self.check_history),
"pattern_matches": dict(pattern_stats),
"pattern_effectiveness": {
category: {
pattern: count / len(self.check_history)
for pattern, count in patterns.items()
}
for category, patterns in pattern_stats.items()
}
}
def get_recommendations(self) -> List[Dict[str, Any]]:
"""Get security recommendations based on check history"""
if not self.check_history:
return []
recommendations = []
risk_counts = defaultdict(int)
total_checks = len(self.check_history)
# Count risk occurrences
for result in self.check_history:
for risk in result.risks:
risk_counts[risk] += 1
# Generate recommendations
for risk, count in risk_counts.items():
frequency = count / total_checks
if frequency > 0.1: # More than 10% occurrence
recommendations.append({
"risk": risk.value,
"frequency": frequency,
"severity": "high" if frequency > 0.5 else "medium",
"recommendations": self._get_risk_recommendations(risk)
})
return recommendations
def _get_risk_recommendations(self, risk: RetrievalRisk) -> List[str]:
"""Get recommendations for specific risk"""
recommendations = {
RetrievalRisk.PRIVACY_LEAK: [
"Implement stronger data masking",
"Add privacy-focused preprocessing",
"Review data handling policies"
],
RetrievalRisk.CONTEXT_INJECTION: [
"Enhance input validation",
"Implement context boundaries",
"Add injection detection"
],
RetrievalRisk.RELEVANCE_MANIPULATION: [
"Adjust similarity thresholds",
"Implement semantic filtering",
"Review retrieval strategy"
],
RetrievalRisk.CHUNKING_MANIPULATION: [
"Standardize chunk sizes",
"Add chunk validation",
"Implement overlap detection"
]
}
return recommendations.get(risk, []) |