File size: 7,765 Bytes
ba92f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
vectors/embedding_validator.py - Embedding validation and security
"""

import numpy as np
from typing import Dict, List, Optional, Any, Tuple
from dataclasses import dataclass
from datetime import datetime
import hashlib
from ..core.logger import SecurityLogger
from ..core.exceptions import ValidationError

@dataclass
class EmbeddingMetadata:
    """Metadata for embeddings"""
    dimension: int
    model: str
    timestamp: datetime
    source: str
    checksum: str

@dataclass
class ValidationResult:
    """Result of embedding validation"""
    is_valid: bool
    errors: List[str]
    normalized_embedding: Optional[np.ndarray]
    metadata: Dict[str, Any]

class EmbeddingValidator:
    """Validates and secures embeddings"""
    
    def __init__(self, security_logger: Optional[SecurityLogger] = None):
        self.security_logger = security_logger
        self.known_models = {
            "openai-ada-002": 1536,
            "openai-text-embedding-ada-002": 1536,
            "huggingface-bert-base": 768,
            "huggingface-mpnet-base": 768
        }
        self.max_dimension = 2048
        self.min_dimension = 64

    def validate_embedding(self, 
                         embedding: np.ndarray,
                         metadata: Optional[Dict[str, Any]] = None) -> ValidationResult:
        """Validate an embedding vector"""
        try:
            errors = []
            
            # Check dimensions
            if embedding.ndim != 1:
                errors.append("Embedding must be a 1D vector")
            
            if len(embedding) > self.max_dimension:
                errors.append(f"Embedding dimension exceeds maximum {self.max_dimension}")
            
            if len(embedding) < self.min_dimension:
                errors.append(f"Embedding dimension below minimum {self.min_dimension}")
            
            # Check for NaN or Inf values
            if np.any(np.isnan(embedding)) or np.any(np.isinf(embedding)):
                errors.append("Embedding contains NaN or Inf values")
            
            # Validate against known models
            if metadata and 'model' in metadata:
                if metadata['model'] in self.known_models:
                    expected_dim = self.known_models[metadata['model']]
                    if len(embedding) != expected_dim:
                        errors.append(
                            f"Dimension mismatch for model {metadata['model']}: "
                            f"expected {expected_dim}, got {len(embedding)}"
                        )
            
            # Normalize embedding
            normalized = None
            if not errors:
                normalized = self._normalize_embedding(embedding)
                
                # Calculate checksum
                checksum = self._calculate_checksum(normalized)
                
                # Create metadata
                embedding_metadata = EmbeddingMetadata(
                    dimension=len(embedding),
                    model=metadata.get('model', 'unknown') if metadata else 'unknown',
                    timestamp=datetime.utcnow(),
                    source=metadata.get('source', 'unknown') if metadata else 'unknown',
                    checksum=checksum
                )
            
            result = ValidationResult(
                is_valid=len(errors) == 0,
                errors=errors,
                normalized_embedding=normalized,
                metadata=vars(embedding_metadata) if not errors else {}
            )
            
            if errors and self.security_logger:
                self.security_logger.log_security_event(
                    "embedding_validation_failure",
                    errors=errors,
                    metadata=metadata
                )
            
            return result
            
        except Exception as e:
            if self.security_logger:
                self.security_logger.log_security_event(
                    "embedding_validation_error",
                    error=str(e)
                )
            raise ValidationError(f"Embedding validation failed: {str(e)}")

    def _normalize_embedding(self, embedding: np.ndarray) -> np.ndarray:
        """Normalize embedding vector"""
        norm = np.linalg.norm(embedding)
        if norm > 0:
            return embedding / norm
        return embedding

    def _calculate_checksum(self, embedding: np.ndarray) -> str:
        """Calculate checksum for embedding"""
        return hashlib.sha256(embedding.tobytes()).hexdigest()

    def check_similarity(self, 
                        embedding1: np.ndarray, 
                        embedding2: np.ndarray) -> float:
        """Check similarity between two embeddings"""
        try:
            # Validate both embeddings
            result1 = self.validate_embedding(embedding1)
            result2 = self.validate_embedding(embedding2)
            
            if not result1.is_valid or not result2.is_valid:
                raise ValidationError("Invalid embeddings for similarity check")
            
            # Calculate cosine similarity
            return float(np.dot(
                result1.normalized_embedding,
                result2.normalized_embedding
            ))
            
        except Exception as e:
            if self.security_logger:
                self.security_logger.log_security_event(
                    "similarity_check_error",
                    error=str(e)
                )
            raise ValidationError(f"Similarity check failed: {str(e)}")

    def detect_anomalies(self, 
                        embeddings: List[np.ndarray],
                        threshold: float = 0.8) -> List[int]:
        """Detect anomalous embeddings in a set"""
        try:
            anomalies = []
            
            # Validate all embeddings
            valid_embeddings = []
            for i, emb in enumerate(embeddings):
                result = self.validate_embedding(emb)
                if result.is_valid:
                    valid_embeddings.append(result.normalized_embedding)
                else:
                    anomalies.append(i)
            
            if not valid_embeddings:
                return list(range(len(embeddings)))
            
            # Calculate mean embedding
            mean_embedding = np.mean(valid_embeddings, axis=0)
            mean_embedding = self._normalize_embedding(mean_embedding)
            
            # Check similarities
            for i, emb in enumerate(valid_embeddings):
                similarity = float(np.dot(emb, mean_embedding))
                if similarity < threshold:
                    anomalies.append(i)
            
            if anomalies and self.security_logger:
                self.security_logger.log_security_event(
                    "anomalous_embeddings_detected",
                    count=len(anomalies),
                    total_embeddings=len(embeddings)
                )
            
            return anomalies
            
        except Exception as e:
            if self.security_logger:
                self.security_logger.log_security_event(
                    "anomaly_detection_error",
                    error=str(e)
                )
            raise ValidationError(f"Anomaly detection failed: {str(e)}")

    def add_known_model(self, model_name: str, dimension: int):
        """Add a known model to the validator"""
        self.known_models[model_name] = dimension

    def verify_metadata(self, metadata: Dict[str, Any]) -> bool:
        """Verify embedding metadata"""
        required_fields = {'model', 'dimension', 'timestamp'}
        return all(field in metadata for field in required_fields)