File size: 5,769 Bytes
8a0e083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# src/llmguardian/dashboard/app.py

import streamlit as st
import plotly.express as px
import pandas as pd
from datetime import datetime, timedelta
from typing import Dict, List, Any
from ..core.config import Config
from ..data.privacy_guard import PrivacyGuard
from ..monitors.usage_monitor import UsageMonitor
from ..vectors.vector_scanner import VectorScanner

class LLMGuardianDashboard:
    def __init__(self):
        self.config = Config()
        self.privacy_guard = PrivacyGuard()
        self.usage_monitor = UsageMonitor()
        self.vector_scanner = VectorScanner()

    def run(self):
        st.set_page_config(page_title="LLMGuardian Dashboard", layout="wide")
        st.title("LLMGuardian Security Dashboard")

        # Sidebar navigation
        page = st.sidebar.selectbox(
            "Navigation",
            ["Overview", "Privacy Monitor", "Vector Security", "Usage Stats", "Settings"]
        )

        if page == "Overview":
            self._render_overview()
        elif page == "Privacy Monitor":
            self._render_privacy_monitor()
        elif page == "Vector Security":
            self._render_vector_security()
        elif page == "Usage Stats":
            self._render_usage_stats()
        elif page == "Settings":
            self._render_settings()

    def _render_overview(self):
        col1, col2, col3 = st.columns(3)

        with col1:
            st.metric(
                "Privacy Violations",
                self._get_privacy_violations_count(),
                self._get_privacy_violations_delta()
            )

        with col2:
            st.metric(
                "Security Score",
                f"{self._calculate_security_score()}%",
                self._get_security_score_delta()
            )

        with col3:
            st.metric(
                "Active Monitors",
                self._get_active_monitors_count()
            )

        # Security alerts
        st.subheader("Recent Security Alerts")
        alerts = self._get_recent_alerts()
        for alert in alerts:
            st.error(alert)

        # Usage trends
        st.subheader("Usage Trends")
        fig = self._create_usage_trend_chart()
        st.plotly_chart(fig, use_container_width=True)

    def _render_privacy_monitor(self):
        st.subheader("Privacy Monitoring")
        
        # Privacy violations by category
        violations_df = self._get_privacy_violations_data()
        fig = px.pie(violations_df, values='count', names='category', 
                    title='Privacy Violations by Category')
        st.plotly_chart(fig)

        # Privacy rules status
        st.subheader("Privacy Rules Status")
        rules_df = self._get_privacy_rules_status()
        st.dataframe(rules_df)

        # Real-time monitoring
        st.subheader("Real-time Privacy Monitoring")
        if st.button("Check Privacy Now"):
            self._run_privacy_check()

    def _render_vector_security(self):
        st.subheader("Vector Security Analysis")

        # Vector anomalies
        anomalies_df = self._get_vector_anomalies()
        st.dataframe(anomalies_df)

        # Vector clustering visualization
        fig = self._create_vector_cluster_chart()
        st.plotly_chart(fig)

        # Scan vectors
        st.subheader("Vector Scanner")
        if st.button("Scan Vectors"):
            self._run_vector_scan()

    def _render_usage_stats(self):
        st.subheader("System Usage Statistics")
        
        # Resource usage
        col1, col2, col3 = st.columns(3)
        with col1:
            st.metric("CPU Usage", f"{self._get_cpu_usage()}%")
        with col2:
            st.metric("Memory Usage", f"{self._get_memory_usage()}%")
        with col3:
            st.metric("Request Rate", f"{self._get_request_rate()}/min")

        # Usage history
        st.line_chart(self._get_usage_history())

    def _render_settings(self):
        st.subheader("LLMGuardian Settings")

        # Config sections
        with st.expander("Security Settings"):
            self._render_security_settings()

        with st.expander("Privacy Settings"):
            self._render_privacy_settings()

        with st.expander("Monitoring Settings"):
            self._render_monitoring_settings()

    def _calculate_security_score(self) -> float:
        # Implementation of security score calculation
        return 85.5

    def _get_privacy_violations_count(self) -> int:
        # Get privacy violations count
        return len(self.privacy_guard.check_history)

    def _get_recent_alerts(self) -> List[str]:
        # Get recent security alerts
        return ["Critical: High risk privacy violation detected", 
                "Warning: Unusual vector pattern detected"]

    def _create_usage_trend_chart(self):
        # Create usage trend visualization
        df = pd.DataFrame({
            'timestamp': pd.date_range(start='2024-01-01', periods=10),
            'value': [10, 15, 13, 17, 20, 25, 30, 35, 45, 50]
        })
        return px.line(df, x='timestamp', y='value', title='Usage Trend')

    def _get_vector_anomalies(self) -> pd.DataFrame:
        # Get vector anomalies data
        return pd.DataFrame({
            'timestamp': ['2024-01-01', '2024-01-02'],
            'type': ['outlier', 'cluster'],
            'severity': ['high', 'medium']
        })

    def _run_privacy_check(self):
        st.info("Running privacy check...")
        # Implement privacy check logic
        st.success("Privacy check completed")

    def _run_vector_scan(self):
        st.info("Scanning vectors...")
        # Implement vector scan logic
        st.success("Vector scan completed")

if __name__ == "__main__":
    dashboard = LLMGuardianDashboard()
    dashboard.run()