File size: 4,585 Bytes
ba4bce7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
from __future__ import annotations
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="LLukas22/gpt4all-lora-quantized-ggjt", filename="ggjt-model.bin", local_dir=".")
llm = Llama(model_path="./ggjt-model.bin")
ins = '''### Instruction:
{}
### Response:
'''
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
# def generate(instruction):
# response = llm(ins.format(instruction))
# response = response['choices'][0]['text']
# result = ""
# for word in response.split(" "):
# result += word + " "
# yield result
def generate(instruction):
result = ""
for x in llm(ins.format(instruction), stop=['### Instruction:', '### End'], stream=True):
result += x['choices'][0]['text']
yield result
examples = [
"Instead of making a peanut butter and jelly sandwich, what else could I combine peanut butter with in a sandwich? Give five ideas",
"How do I make a campfire?",
"Explain to me the difference between nuclear fission and fusion.",
"I'm selling my Nikon D-750, write a short blurb for my ad."
]
def process_example(args):
for x in generate(args):
pass
return x
css = ".generating {visibility: hidden}"
# Based on the gradio theming guide and borrowed from https://huggingface.co/spaces/shivi/dolly-v2-demo
class SeafoamCustom(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.emerald,
secondary_hue: colors.Color | str = colors.blue,
neutral_hue: colors.Color | str = colors.blue,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("Quicksand"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
font=font,
font_mono=font_mono,
)
super().set(
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
button_primary_text_color="white",
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
block_shadow="*shadow_drop_lg",
button_shadow="*shadow_drop_lg",
input_background_fill="zinc",
input_border_color="*secondary_300",
input_shadow="*shadow_drop",
input_shadow_focus="*shadow_drop_lg",
)
seafoam = SeafoamCustom()
with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo:
with gr.Column():
gr.Markdown(
""" ## GPT4ALL
7b quantized 4bit (q4_0)
Type in the box below and click the button to generate answers to your most pressing questions!
"""
)
with gr.Row():
with gr.Column(scale=3):
instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")
with gr.Box():
gr.Markdown("**Answer**")
output = gr.Markdown(elem_id="q-output")
submit = gr.Button("Generate", variant="primary")
gr.Examples(
examples=examples,
inputs=[instruction],
cache_examples=False,
fn=process_example,
outputs=[output],
)
submit.click(generate, inputs=[instruction], outputs=[output])
instruction.submit(generate, inputs=[instruction], outputs=[output])
demo.queue(concurrency_count=1).launch(debug=True) |