File size: 4,585 Bytes
ba4bce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from __future__ import annotations
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes

from llama_cpp import Llama
from huggingface_hub import hf_hub_download

hf_hub_download(repo_id="LLukas22/gpt4all-lora-quantized-ggjt", filename="ggjt-model.bin", local_dir=".")
llm = Llama(model_path="./ggjt-model.bin")


ins = '''### Instruction:
{}
### Response:
'''

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)




# def generate(instruction): 
#     response = llm(ins.format(instruction))
#     response = response['choices'][0]['text']
#     result = ""
#     for word in response.split(" "):
#         result += word + " "
#         yield result

def generate(instruction): 
    result = ""
    for x in llm(ins.format(instruction), stop=['### Instruction:', '### End'], stream=True):
        result += x['choices'][0]['text']
        yield result


examples = [
    "Instead of making a peanut butter and jelly sandwich, what else could I combine peanut butter with in a sandwich? Give five ideas",
    "How do I make a campfire?",
    "Explain to me the difference between nuclear fission and fusion.",
    "I'm selling my Nikon D-750, write a short blurb for my ad."
]

def process_example(args):
    for x in generate(args):
        pass
    return x
    
css = ".generating {visibility: hidden}"

# Based on the gradio theming guide and borrowed from https://huggingface.co/spaces/shivi/dolly-v2-demo
class SeafoamCustom(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.emerald,
        secondary_hue: colors.Color | str = colors.blue,
        neutral_hue: colors.Color | str = colors.blue,
        spacing_size: sizes.Size | str = sizes.spacing_md,
        radius_size: sizes.Size | str = sizes.radius_md,
        font: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Quicksand"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
            button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
            button_primary_text_color="white",
            button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
            block_shadow="*shadow_drop_lg",
            button_shadow="*shadow_drop_lg",
            input_background_fill="zinc",
            input_border_color="*secondary_300",
            input_shadow="*shadow_drop",
            input_shadow_focus="*shadow_drop_lg",
        )


seafoam = SeafoamCustom()


with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo:
    with gr.Column():
        gr.Markdown(
            """ ## GPT4ALL
            
            7b quantized 4bit (q4_0)
            
            Type in the box below and click the button to generate answers to your most pressing questions!
            
      """
        )

        with gr.Row():
            with gr.Column(scale=3):
                instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")

                with gr.Box():
                    gr.Markdown("**Answer**")
                    output = gr.Markdown(elem_id="q-output")
                submit = gr.Button("Generate", variant="primary")
                gr.Examples(
                    examples=examples,
                    inputs=[instruction],
                    cache_examples=False,
                    fn=process_example,
                    outputs=[output],
                )
        


    submit.click(generate, inputs=[instruction], outputs=[output])
    instruction.submit(generate, inputs=[instruction], outputs=[output])

demo.queue(concurrency_count=1).launch(debug=True)