File size: 10,890 Bytes
a87bc00
2e83a41
 
a87bc00
 
1726132
a87bc00
 
 
 
 
 
 
 
 
 
 
cd8ad01
529eea1
a87bc00
 
22af537
 
a87bc00
7b11062
d887fe7
a87bc00
 
 
 
c27c36d
a87bc00
 
aa5087f
 
8b674fc
a87bc00
 
 
 
d963f31
a87bc00
 
 
 
5f546a1
 
 
 
 
 
a87bc00
 
5f546a1
a87bc00
 
 
 
 
 
 
 
 
 
 
c90d42e
a87bc00
 
c90d42e
 
a87bc00
 
 
 
 
 
 
c90d42e
a87bc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1726132
 
 
e030268
1726132
a87bc00
 
 
 
 
 
 
 
5577484
a87bc00
 
 
 
 
 
 
 
 
 
 
 
1726132
a87bc00
 
 
 
 
 
 
 
7fa8edb
a87bc00
5577484
a87bc00
 
 
5696ea4
7fa8edb
5696ea4
7a4b822
bc86dbe
 
 
 
 
 
 
a87bc00
 
d7c764c
 
 
 
427074d
d7c764c
e9f9b30
d7c764c
 
f10fd87
d7c764c
 
 
 
ed4ccd5
 
d7c764c
 
 
 
 
 
 
 
a87bc00
6542f5d
5577484
 
 
 
 
 
6542f5d
 
5577484
 
 
a82e853
6542f5d
 
 
 
 
 
 
 
 
54ed831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a32f1aa
54ed831
 
 
 
 
a32f1aa
54ed831
 
 
 
 
 
 
 
a32f1aa
b8c6825
54ed831
 
40c1a81
54ed831
 
 
6054550
 
b8c6825
c457784
 
54ed831
 
 
 
 
 
 
 
 
 
 
 
b8c6825
c457784
 
54ed831
 
 
 
 
 
 
 
 
 
 
 
b8c6825
c457784
 
54ed831
 
 
 
75a8a58
54ed831
 
 
 
 
b8c6825
54ed831
 
 
 
 
 
 
 
 
 
 
 
76ec819
529eea1
67f8b07
529eea1
7a966d7
529eea1
 
 
6542f5d
529eea1
 
 
76ec819
a87bc00
 
 
 
6542f5d
 
 
 
 
 
 
 
 
bc86dbe
7a4b822
41f896c
22af537
41f896c
 
 
 
6542f5d
bc86dbe
7a4b822
41f896c
d332967
41f896c
 
 
 
6542f5d
40c1a81
6542f5d
a87bc00
bc86dbe
d7c764c
6542f5d
a87bc00
 
 
d7c764c
a87bc00
 
 
 
 
6542f5d
 
bc86dbe
 
6542f5d
d7c764c
6542f5d
e70e007
9a06070
9159590
6bd38d3
a87bc00
9159590
5a2e6b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# -*- coding: utf-8 -*-
"""
# MANIFESTO ANALYSIS
"""

##IMPORTING LIBRARIES
import random
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import word_tokenize,sent_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords 
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist
from cleantext import clean
import textract
import urllib.request
import nltk.corpus  
from nltk.text import Text
import io
from io import StringIO,BytesIO
import sys 
import pandas as pd
import cv2
import re
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
from textblob import TextBlob
from PIL import Image
import os
import gradio as gr
from zipfile import ZipFile
import contractions
import unidecode


nltk.download('stopwords')
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('words')


"""## PARSING FILES"""

#def Parsing(parsed_text):
  #parsed_text=parsed_text.name
  #raw_party =parser.from_file(parsed_text) 
 # raw_party = raw_party['content']
#  return clean(raw_party)
  
def Parsing(parsed_text):
  parsed_text=parsed_text.name
  raw_party =textract.process(parsed_text, encoding='ascii',method='pdfminer') 
  return clean(raw_party)


#Added more stopwords to avoid irrelevant terms
stop_words = set(stopwords.words('english'))
stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2')

"""## PREPROCESSING"""

def clean_text(text):
  '''
  The function which returns clean text
  '''
  text = text.encode("ascii", errors="ignore").decode("ascii")  # remove non-asciicharacters
  text=unidecode.unidecode(text)# diacritics remove
  text=contractions.fix(text) # contraction fix
  text = re.sub(r"\n", " ", text)
  text = re.sub(r"\n\n", " ", text)
  text = re.sub(r"\t", " ", text)
  text = re.sub(r"/ ", " ", text)
  text = text.strip(" ")
  text = re.sub(" +", " ", text).strip()  # get rid of multiple spaces and replace with a single
  
  text = [word for word in text.split() if word not in stop_words]
  text = ' '.join(text)
  return text

# text_Party=clean_text(raw_party)

def Preprocess(textParty):
  '''
  Removing special characters extra spaces
  '''
  text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty) 
  #Removing all stop words
  pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
  text2Party = pattern.sub('', text1Party)
  # fdist_cong = FreqDist(word_tokens_cong)
  return text2Party





'''
  Using Concordance, you can see each time a word is used, along with its 
  immediate context. It can give you a peek into how a word is being used
  at the sentence level and what words are used with it 
'''
def concordance(text_Party,strng):
  word_tokens_party = word_tokenize(text_Party)
  moby = Text(word_tokens_party) 
  resultList = []
  for i in range(0,1):
      save_stdout = sys.stdout
      result = StringIO()
      sys.stdout = result
      moby.concordance(strng,lines=4,width=82)    
      sys.stdout = save_stdout      
  s=result.getvalue().splitlines()
  return result.getvalue()
  

def normalize(d, target=1.0):
   raw = sum(d.values())
   factor = target/raw
   return {key:value*factor for key,value in d.items()}

def fDistance(text2Party):
  '''
  Most frequent words search
  '''
  word_tokens_party = word_tokenize(text2Party) #Tokenizing
  fdistance = FreqDist(word_tokens_party).most_common(10)
  mem={}
  for x in fdistance:
    mem[x[0]]=x[1]
  return normalize(mem)

def fDistancePlot(text2Party,plotN=15):
  '''
  Most Frequent Words Visualization
  '''
  word_tokens_party = word_tokenize(text2Party) #Tokenizing
  fdistance = FreqDist(word_tokens_party)
  plt.title('Frequency Distribution')
  plt.axis('off')
  plt.figure(figsize=(4,3))
  fdistance.plot(plotN)
  plt.tight_layout()
  buf = BytesIO()
  plt.savefig(buf)
  buf.seek(0)
  img1 = Image.open(buf)
  plt.clf() 
  return img1


def DispersionPlot(textParty):
  '''
  Dispersion PLot
  '''
  word_tokens_party = word_tokenize(textParty) #Tokenizing
  moby = Text(word_tokens_party) 
  fdistance = FreqDist(word_tokens_party)
  word_Lst=[]
  for x in range(5):
    word_Lst.append(fdistance.most_common(6)[x][0]) 
  
  plt.axis('off')
  plt.title('Dispersion Plot')
  plt.figure(figsize=(4,3))
  moby.dispersion_plot(word_Lst)
  plt.plot(color="#EF6D6D")
  plt.tight_layout()
  buf = BytesIO()
  plt.savefig(buf)
  buf.seek(0)
  img = Image.open(buf)
  plt.clf() 
  return img


def getSubjectivity(text):
  
  '''
  Create a function to get the polarity
  '''
  return TextBlob(text).sentiment.subjectivity


def getPolarity(text):
  '''
  Create a function to get the polarity
  '''
  return  TextBlob(text).sentiment.polarity
  
  
def getAnalysis(score):
  if score < 0:
    return 'Negative'
  elif score == 0:
    return 'Neutral'
  else:
    return 'Positive'
def Original_Image(path):
  img= cv2.imread(path)
  img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  
  return img

def Image_Processed(path):
  '''
  Reading the image file
  '''
  img= cv2.imread(path)
  img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  
  #Thresholding
  ret, bw_img = cv2.threshold(img, 124, 255, cv2.THRESH_BINARY)

  return bw_img
 
def wordCloud(orgIm,mask_img,text_Party_pr,maxWord=2000,colorGener=True,contCol='white',bckColor='white'):
  '''
  Generating word cloud
  '''
  
  mask =mask_img
  # Create and generate a word cloud image:
  wordcloud = WordCloud(max_words=maxWord, background_color=bckColor,
                        mask=mask,
                        colormap='nipy_spectral_r',
                        contour_color=contCol,
                        width=800, height=800,
                        margin=2,
                        contour_width=3).generate(text_Party_pr)

  # create coloring from image

  
  
  if colorGener==True:
    image_colors = ImageColorGenerator(orgIm)
    plt.imshow(wordcloud.recolor(color_func= image_colors),interpolation="bilinear")
    
  
  else:    
    plt.imshow(wordcloud)
    
  
  plt.axis("off")
  
def word_cloud_generator(parsed_text_name,text_Party):
  parsed=parsed_text_name.lower()

  if 'bjp' in parsed:
    orgImg=Original_Image('bjpImg2.jpg')
    bwImg=Image_Processed('bjpImg2.jpg')
    plt.figure(figsize=(15,12))
    wordCloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=True,contCol='white',bckColor='black')
    
    plt.tight_layout()
    buf = BytesIO()
    plt.savefig(buf)
    buf.seek(0)
    img1 = Image.open(buf)
    plt.clf() 
    return img1

  
  elif 'congress' in parsed:
    orgImg=Original_Image('congrsMain.jpg')
    bwImg=Image_Processed('congrsMain.jpg')
    plt.figure(figsize=(15,12))
    wordCloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=True)
    
    plt.tight_layout()
    buf = BytesIO()
    plt.savefig(buf)
    buf.seek(0)
    img2 = Image.open(buf)
    plt.clf() 
    return img2
    
  
  elif 'aap' in parsed:
    orgImg=Original_Image('AAPMain.jpg')
    bwImg=Image_Processed('AAPMain.jpg')
    plt.figure(figsize=(15,12))
    wordCloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=False,contCol='black')
    
    plt.tight_layout()
    buf = BytesIO()
    plt.savefig(buf)
    buf.seek(0)
    img3 = Image.open(buf)
    plt.clf() 
    return img3
  
  else :
    wordcloud = WordCloud(max_words=2000, background_color="white",mode="RGB").generate(text_Party)
    plt.figure(figsize=(15,12))
    plt.imshow(wordcloud, interpolation="bilinear")
    plt.axis("off")   
    plt.tight_layout()
    buf = BytesIO()
    plt.savefig(buf)
    buf.seek(0)
    img4 = Image.open(buf)
    plt.clf()
    return img4



'''
url = "http://library.bjp.org/jspui/bitstream/123456789/2988/1/BJP-Election-english-2019.pdf"
path_input = "./Bjp_Manifesto_2019.pdf"
urllib.request.urlretrieve(url, filename=path_input)

url="https://drive.google.com/uc?id=1BLCiy_BWilfVdrUH8kbO-44DJevwO5CG&export=download"
path_input = "./Aap_Manifesto_2019.pdf"
urllib.request.urlretrieve(url, filename=path_input)

url="https://drive.google.com/uc?id=1HVZvTtYntl0YKLnE0cwu0CvAIRhXOv60&export=download"
path_input = "./Congress_Manifesto_2019.pdf"
urllib.request.urlretrieve(url, filename=path_input)
'''
def analysis(Manifesto,Search):
  raw_party = Parsing(Manifesto)
  text_Party=clean_text(raw_party)
  text_Party= Preprocess(text_Party)

  df = pd.DataFrame(raw_party.split('\n'), columns=['Content'])
  df['Subjectivity'] = df['Content'].apply(getSubjectivity)
  df['Polarity'] = df['Content'].apply(getPolarity)
  df['Analysis on Polarity'] = df['Polarity'].apply(getAnalysis)
  df['Analysis on Subjectivity'] = df['Subjectivity'].apply(getAnalysis)
  plt.title('Sentiment Analysis')
  plt.xlabel('Sentiment')
  plt.ylabel('Counts')
  plt.figure(figsize=(4,3))
  df['Analysis on Polarity'].value_counts().plot(kind ='bar',color="#FF9F45")
  plt.tight_layout()
  buf = BytesIO()
  plt.savefig(buf)
  buf.seek(0)
  img1 = Image.open(buf)
  plt.clf() 
  
  plt.figure(figsize=(4,3))
  df['Analysis on Subjectivity'].value_counts().plot(kind ='bar',color="#B667F1")
  plt.tight_layout()
  buf = BytesIO()
  plt.savefig(buf)
  buf.seek(0)
  img2 = Image.open(buf)
  plt.clf()
  
  img3 = word_cloud_generator(Manifesto.name,text_Party)
  
  fdist_Party=fDistance(text_Party)
  img4=fDistancePlot(text_Party)
  img5=DispersionPlot(text_Party)
  
  searchRes=concordance(text_Party,Search)
  searChRes=clean(searchRes)
  searChRes=searchRes.replace(Search,"\u0332".join(Search))
  return searChRes,fdist_Party,img1,img2,img3,img4,img5

  
Search_txt=gr.inputs.Textbox()   
filePdf = gr.inputs.File()
text = gr.outputs.Textbox(label='SEARCHED OUTPUT')
mfw=gr.outputs.Label(label="Most Relevant Topics")
plot1=gr.outputs. Image(label='Sentiment Analysis')
plot2=gr.outputs.Image(label='Subjectivity Analysis')
plot3=gr.outputs.Image(label='Word Cloud')
plot4=gr.outputs.Image(label='Frequency Distribution')
plot5=gr.outputs.Image(label='Dispersion Plot')

io=gr.Interface(fn=analysis, inputs=[filePdf,Search_txt], outputs=[text,mfw,plot1,plot2,plot3,plot4,plot5], title='Manifesto Analysis',description='Aim- To understand and interpret the official manifestos of political parties published on their websites.\nThe analysis would bring clarity of ideas for the general public and precise issues taken or would be taken care  by the political parties.',examples=[['manifestos/Bjp_Manifesto_2019.pdf','modi'],['manifestos/AAP_Manifesto_2019.pdf','delhi'],['manifestos/Congress_Manifesto_2019.pdf','safety']])
io.launch(debug=True,share=False)
#,examples=[['./Bjp_Manifesto_2019.pdf','india'],['./AAP_Manifesto_2019.pdf',],['./Congress_Manifesto_2019.pdf',]]
#allow_screenshot=False,    allow_flagging="never",

#examples=[['manifestos/Bjp_Manifesto_2019.pdf','modi'],['AAP_Manifesto_2019.pdf','delhi'],['manifestos/Congress_Manifesto_2019.pdf','safety']])