Spaces:
Sleeping
Sleeping
File size: 17,115 Bytes
96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 96b1e9b 3323e08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import gradio as gr
import pandas as pd
import numpy as np
import re
import unicodedata
from typing import Dict, List, Tuple
import ftfy
import nltk
from bert_score import score as bert_score
from rouge_score import rouge_scorer
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from nltk.translate.meteor_score import meteor_score
from deepeval.test_case import LLMTestCase
from deepeval.metrics import AnswerRelevancyMetric, FaithfulnessMetric, GEval
from deepeval.models import DeepEvalBaseLLM
import google.generativeai as genai
from groq import Groq
import os
from io import StringIO
# Download required NLTK data
nltk.download('punkt', quiet=True)
nltk.download('wordnet', quiet=True)
# Configuration
GEMINI_API_KEY = "your_gemini_api_key" # Replace with your key
GROQ_API_KEY = "your_groq_api_key" # Replace with your key
# Initialize APIs
genai.configure(api_key=GEMINI_API_KEY)
groq_client = Groq(api_key=GROQ_API_KEY)
class LLMProvider:
"""Abstract base class for LLM providers"""
def __init__(self, model_name: str):
self.model_name = model_name
def generate(self, prompt: str) -> str:
raise NotImplementedError
def get_model_name(self) -> str:
return self.model_name
class GeminiProvider(LLMProvider):
"""Gemini implementation"""
def __init__(self, model_name: str = "gemini-1.5-flash"):
super().__init__(model_name)
self.model = genai.GenerativeModel(model_name)
def generate(self, prompt: str) -> str:
try:
response = self.model.generate_content(prompt)
return response.text.strip()
except Exception as e:
return f"Error generating with Gemini: {str(e)}"
class GroqProvider(LLMProvider):
"""Groq implementation for LLaMA models"""
def __init__(self, model_name: str = "llama3-70b-8192"):
super().__init__(model_name)
def generate(self, prompt: str) -> str:
try:
chat_completion = groq_client.chat.completions.create(
messages=[
{"role": "user", "content": prompt}
],
model=self.model_name,
temperature=0.7,
max_tokens=2048
)
return chat_completion.choices[0].message.content.strip()
except Exception as e:
return f"Error generating with Groq: {str(e)}"
class DeepEvalLLMWrapper(DeepEvalBaseLLM):
"""Wrapper for DeepEval to work with our providers"""
def __init__(self, provider: LLMProvider):
self.provider = provider
def load_model(self):
return self.provider
def generate(self, prompt: str) -> str:
return self.provider.generate(prompt)
def get_model_name(self) -> str:
return self.provider.get_model_name()
def clean_text(text: str) -> str:
"""Clean text by fixing encoding and normalizing"""
if not text or not isinstance(text, str):
return ""
# Fix encoding artifacts
text = ftfy.fix_text(text)
text = unicodedata.normalize('NFKD', text)
# Fix quotes and other common issues
text = text.replace('Γ’β¬Ε', '"').replace('Γ’β¬', '"')
text = text.replace('Γ’β¬β', '-').replace('Γ’β¬β', '-')
text = text.replace('Γ’β¬Λ', "'").replace('Γ’β¬β’', "'")
# Remove non-ASCII characters
text = re.sub(r'[^\x00-\x7F]+', ' ', text)
# Normalize whitespace
text = ' '.join(text.split())
return text.strip()
def evaluate_metrics(input_text: str, candidate_text: str, reference_text: str) -> Dict:
"""Run comprehensive evaluation on the generated text"""
# Clean the texts
cleaned_input = clean_text(input_text)
cleaned_candidate = clean_text(candidate_text)
cleaned_reference = clean_text(reference_text)
results = {}
# Traditional metrics
try:
# BLEU Score
smooth = SmoothingFunction().method4
bleu_score = sentence_bleu(
[cleaned_reference.split()],
cleaned_candidate.split(),
smoothing_function=smooth
)
results["BLEU"] = bleu_score
# ROUGE Score
rouge_scorer_obj = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
rouge_scores = rouge_scorer_obj.score(cleaned_reference, cleaned_candidate)
rouge_avg = (rouge_scores['rouge1'].fmeasure +
rouge_scores['rouge2'].fmeasure +
rouge_scores['rougeL'].fmeasure) / 3
results["ROUGE"] = rouge_avg
# METEOR Score
meteor = meteor_score([cleaned_reference.split()], cleaned_candidate.split())
results["METEOR"] = meteor
# BERT Score
P, R, F1 = bert_score([cleaned_candidate], [cleaned_reference], lang="en", verbose=False)
results["BERTScore"] = F1.item()
except Exception as e:
results["Error"] = f"Traditional metrics error: {str(e)}"
# LLM-as-judge metrics (using Gemini for consistency)
try:
judge_provider = GeminiProvider("gemini-1.5-flash")
judge_wrapper = DeepEvalLLMWrapper(judge_provider)
test_case = LLMTestCase(
input=cleaned_input,
actual_output=cleaned_candidate,
expected_output=cleaned_reference
)
# Answer Relevancy
answer_rel = AnswerRelevancyMetric(model=judge_wrapper)
answer_rel.measure(test_case)
results["AnswerRelevancy"] = answer_rel.score
# Faithfulness
faith = FaithfulnessMetric(model=judge_wrapper)
faith.measure(test_case)
results["Faithfulness"] = faith.score
# GEval
geval = GEval(
name="OverallQuality",
criteria="Evaluate if the candidate response is accurate, complete, and well-written.",
evaluation_params=[
"input", "actual_output", "expected_output"
],
model=judge_wrapper
)
geval.measure(test_case)
results["GEval"] = geval.score
except Exception as e:
results["LLM_Judge_Error"] = f"LLM-as-judge metrics error: {str(e)}"
# Normalization and Hybrid Score
normalization_ranges = {
"AnswerRelevancy": (0.0, 1.0),
"Faithfulness": (0.0, 1.0),
"GEval": (0.0, 1.0),
"BERTScore": (0.7, 0.95),
"ROUGE": (0.0, 0.6),
"BLEU": (0.0, 0.4),
"METEOR": (0.0, 0.6)
}
weights = {
"AnswerRelevancy": 0.10,
"Faithfulness": 0.10,
"GEval": 0.025,
"BERTScore": 0.20,
"ROUGE": 0.15,
"BLEU": 0.025,
"METEOR": 0.15
}
# Normalize scores
normalized_scores = {}
for metric, value in results.items():
if metric in normalization_ranges and isinstance(value, (int, float)):
min_v, max_v = normalization_ranges[metric]
if max_v > min_v: # Avoid division by zero
norm = max(min((value - min_v) / (max_v - min_v), 1.0), 0.0)
normalized_scores[metric] = norm
else:
normalized_scores[metric] = 0.5
elif isinstance(value, (int, float)):
normalized_scores[metric] = value
# Calculate weighted average
if normalized_scores:
weighted_sum = sum(normalized_scores.get(m, 0) * w for m, w in weights.items())
total_weight = sum(w for m, w in weights.items() if m in normalized_scores)
results["WeightedAverage"] = weighted_sum / total_weight if total_weight > 0 else 0.0
else:
results["WeightedAverage"] = 0.0
return results
def process_single_text(input_text: str, model_choice: str) -> Tuple[str, str, Dict]:
"""Process a single text input"""
if not input_text or len(input_text.strip()) < 10:
return "", "", {"Error": "Input text too short"}
# Choose model
if model_choice == "Gemini":
provider = GeminiProvider("gemini-1.5-flash")
elif model_choice == "LLaMA-3-70b":
provider = GroqProvider("llama3-70b-8192")
else: # LLaMA-3-8b
provider = GroqProvider("llama3-8b-8192")
# Generate candidate
prompt = f"""Rewrite the following paragraph in a fresh, concise, and professional style while preserving its full meaning and key information:
{input_text}
Provide only the rewritten text without any additional commentary."""
candidate = provider.generate(prompt)
# Use cleaned input as reference (simulating human-quality standard)
reference = clean_text(input_text)
# Evaluate
scores = evaluate_metrics(input_text, candidate, reference)
return candidate, reference, scores
def process_file(file_obj, model_choice: str) -> Tuple[pd.DataFrame, str]:
"""Process a CSV file with multiple articles"""
try:
# Read the file
content = file_obj.read().decode('utf-8')
df = pd.read_csv(StringIO(content))
# Assume first column is the text
text_column = df.columns[0]
results = []
for idx, row in df.iterrows():
text = str(row[text_column])
candidate, reference, scores = process_single_text(text, model_choice)
result_row = {
'Original_Text': text,
'Generated_Candidate': candidate,
'Reference_Text': reference
}
result_row.update(scores)
results.append(result_row)
results_df = pd.DataFrame(results)
return results_df, "File processed successfully!"
except Exception as e:
return pd.DataFrame(), f"Error processing file: {str(e)}"
def create_gradio_interface():
"""Create the Gradio interface"""
with gr.Blocks(title="LLM Evaluation Framework") as demo:
gr.Markdown("# π LLM Evaluation Framework for Professional Content Rewriting")
gr.Markdown("Evaluate and compare LLM-generated content using multiple metrics. Choose between Gemini and LLaMA models.")
with gr.Tabs():
with gr.Tab("Single Text Processing"):
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter the text you want to rewrite...",
lines=10
)
model_choice_single = gr.Radio(
["Gemini", "LLaMA-3-70b", "LLaMA-3-8b"],
label="Choose Model",
value="Gemini"
)
submit_btn = gr.Button("Generate & Evaluate", variant="primary")
with gr.Column(scale=3):
gr.Markdown("### Results")
with gr.Tabs():
with gr.Tab("Generated Text"):
candidate_output = gr.Textbox(
label="Generated Candidate",
lines=10,
show_copy_button=True
)
reference_output = gr.Textbox(
label="Reference Text (Cleaned Input)",
lines=5,
show_copy_button=True
)
with gr.Tab("Evaluation Scores"):
scores_output = gr.JSON(label="Detailed Scores")
weighted_avg = gr.Number(
label="Weighted Average Score (0-1)",
precision=4
)
interpretation = gr.Textbox(
label="Interpretation",
interactive=False
)
with gr.Tab("Batch Processing (CSV File)"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload CSV File",
file_types=['.csv']
)
model_choice_file = gr.Radio(
["Gemini", "LLaMA-3-70b", "LLaMA-3-8b"],
label="Choose Model for Batch Processing",
value="Gemini"
)
process_file_btn = gr.Button("Process File", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### Results")
file_results = gr.Dataframe(
label="Evaluation Results",
interactive=False
)
file_status = gr.Textbox(label="Status")
# Examples
gr.Examples(
examples=[
["The immune system plays a crucial role in protecting the human body from pathogens such as bacteria, viruses, and other harmful invaders. It is composed of innate and adaptive components that work together to detect and eliminate foreign threats.", "Gemini"],
["Climate change is one of the most pressing challenges facing humanity today. Rising global temperatures have led to severe weather patterns, including more intense storms, droughts, and heatwaves.", "LLaMA-3-70b"]
],
inputs=[input_text, model_choice_single],
outputs=[candidate_output, reference_output, scores_output, weighted_avg, interpretation]
)
# Event handlers
def handle_single_process(text, model):
if not text:
return "", "", {}, 0, "Please enter some text."
candidate, reference, scores = process_single_text(text, model)
# Get weighted average
weighted_avg_val = scores.get("WeightedAverage", 0)
# Interpretation
if weighted_avg_val >= 0.85:
interpretation_text = "β
Outstanding performance (A) - ready for professional use"
elif weighted_avg_val >= 0.70:
interpretation_text = "β
Strong performance (B) - good quality with minor improvements"
elif weighted_avg_val >= 0.50:
interpretation_text = "β οΈ Adequate performance (C) - usable but needs refinement"
elif weighted_avg_val >= 0.30:
interpretation_text = "β Weak performance (D) - requires significant revision"
else:
interpretation_text = "β Poor performance (F) - likely needs complete rewriting"
return candidate, reference, scores, weighted_avg_val, interpretation_text
def handle_file_process(file, model):
if file is None:
return pd.DataFrame(), "Please upload a file."
return process_file(file, model)
submit_btn.click(
fn=handle_single_process,
inputs=[input_text, model_choice_single],
outputs=[candidate_output, reference_output, scores_output, weighted_avg, interpretation]
)
process_file_btn.click(
fn=handle_file_process,
inputs=[file_input, model_choice_file],
outputs=[file_results, file_status]
)
gr.Markdown("""
## π How to Use
1. **Single Text Processing**: Enter your text and choose a model to generate a professional rewrite.
2. **Batch Processing**: Upload a CSV file with one article per row in the first column.
3. **Model Options**:
- **Gemini**: Google's advanced language model
- **LLaMA-3-70b**: Large Meta model (70B parameters)
- **LLaMA-3-8b**: Smaller Meta model (8B parameters)
## π Evaluation Metrics
The system evaluates performance using multiple metrics:
- **Traditional**: BLEU, ROUGE, METEOR (n-gram overlap)
- **Semantic**: BERTScore (embedding similarity)
- **LLM-as-Judge**: AnswerRelevancy, Faithfulness, GEval
- **Final Score**: Weighted average of all metrics (0-1 scale)
""")
return demo
# Launch the app
if __name__ == "__main__":
app = create_gradio_interface()
app.launch(share=True) |