File size: 11,030 Bytes
bc1ce79
 
593b032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1ce79
593b032
 
 
 
 
bc1ce79
593b032
 
 
 
 
 
 
 
bc1ce79
593b032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1ce79
 
593b032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1ce79
 
593b032
 
 
 
 
 
 
bc1ce79
593b032
 
 
 
 
 
 
bc1ce79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593b032
 
 
 
bc1ce79
593b032
 
 
 
 
 
 
 
bc1ce79
 
 
593b032
 
 
bc1ce79
593b032
 
bc1ce79
593b032
bc1ce79
593b032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1ce79
 
593b032
 
 
 
 
 
bc1ce79
593b032
 
 
 
 
 
 
 
 
 
 
bc1ce79
593b032
bc1ce79
 
593b032
 
 
 
 
 
 
 
 
 
 
 
 
bc1ce79
 
 
 
 
 
 
593b032
 
 
bc1ce79
 
 
593b032
 
bc1ce79
 
 
 
 
 
593b032
 
 
 
 
 
bc1ce79
593b032
 
bc1ce79
593b032
bc1ce79
 
d21d521
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# EDUTUTOR AI - Complete app.py for Hugging Face Spaces
# An intelligent AI tutor powered by IBM Granite that provides personalized educational explanations across multiple subjects and difficulty levels.

import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import warnings
warnings.filterwarnings("ignore")

class EduTutorAI:
    def __init__(self):
        self.model_name = "ibm-granite/granite-3.3-2b-instruct"
        self.tokenizer = None
        self.model = None
        self.pipe = None
        self.conversation_history = []
        
    def load_model(self):
        """Load the Granite model and tokenizer"""
        try:
            print("Loading EDUTUTOR AI model...")
            
            # Load tokenizer
            self.tokenizer = AutoTokenizer.from_pretrained(
                self.model_name,
                trust_remote_code=True
            )
            
            # Load model with optimization for deployment
            self.model = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                device_map="auto" if torch.cuda.is_available() else None,
                trust_remote_code=True,
                low_cpu_mem_usage=True
            )
            
            # Create pipeline
            self.pipe = pipeline(
                "text-generation",
                model=self.model,
                tokenizer=self.tokenizer,
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                device_map="auto" if torch.cuda.is_available() else None
            )
            
            print("βœ… Model loaded successfully!")
            return True
            
        except Exception as e:
            print(f"❌ Error loading model: {str(e)}")
            return False
    
    def create_educational_prompt(self, user_question, subject="General", difficulty="Intermediate"):
        """Create an educational prompt template"""
        system_prompt = f"""You are EDUTUTOR AI, an expert educational tutor specializing in {subject}. 
Your role is to:
1. Provide clear, accurate explanations at {difficulty} level
2. Break down complex concepts into digestible parts
3. Use examples and analogies when helpful
4. Encourage learning through questions
5. Be patient and supportive

Student Question: {user_question}

Please provide a comprehensive yet accessible explanation:"""
        
        return system_prompt
    
    def generate_response(self, question, subject, difficulty, max_length=512):
        """Generate educational response"""
        if not self.pipe:
            return "❌ Model not loaded. Please wait for initialization."
        
        try:
            # Create educational prompt
            prompt = self.create_educational_prompt(question, subject, difficulty)
            
            # Generate response
            response = self.pipe(
                prompt,
                max_length=max_length,
                num_return_sequences=1,
                temperature=0.7,
                do_sample=True,
                pad_token_id=self.tokenizer.eos_token_id,
                truncation=True
            )
            
            # Extract the generated text
            full_response = response[0]['generated_text']
            
            # Remove the prompt to get only the AI response
            ai_response = full_response.replace(prompt, "").strip()
            
            # Store in conversation history
            self.conversation_history.append({
                "question": question,
                "subject": subject,
                "difficulty": difficulty,
                "response": ai_response
            })
            
            return ai_response
            
        except Exception as e:
            return f"❌ Error generating response: {str(e)}"
    
    def get_conversation_history(self):
        """Get formatted conversation history"""
        if not self.conversation_history:
            return "No conversation history yet."
        
        history = "πŸ“š **EDUTUTOR AI - Learning Session History**\n\n"
        for i, conv in enumerate(self.conversation_history[-5:], 1):  # Show last 5 conversations
            history += f"**Session {i}:**\n"
            history += f"🎯 Subject: {conv['subject']} | Level: {conv['difficulty']}\n"
            history += f"❓ Question: {conv['question']}\n"
            history += f"πŸ’‘ Response: {conv['response'][:200]}...\n\n"
        
        return history
    
    def clear_history(self):
        """Clear conversation history"""
        self.conversation_history = []
        return "πŸ—‘οΈ Conversation history cleared!"

# Initialize the EduTutor AI
edututor = EduTutorAI()

# Load model function for Gradio
def initialize_model():
    """Initialize the model and return status"""
    success = edututor.load_model()
    if success:
        return "βœ… EDUTUTOR AI is ready! You can now start asking questions."
    else:
        return "❌ Failed to load model. Please try again."

# Main chat function
def chat_with_edututor(question, subject, difficulty, max_length):
    """Main chat interface function"""
    if not question.strip():
        return "Please enter a question to get started!"
    
    response = edututor.generate_response(question, subject, difficulty, max_length)
    return response

# Create Gradio interface
def create_interface():
    """Create the EDUTUTOR AI Gradio interface"""
    
    with gr.Blocks(
        title="πŸŽ“ EDUTUTOR AI - Your Personal Learning Assistant",
        theme=gr.themes.Soft(),
        css="""
        .gradio-container {
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        }
        .main-header {
            text-align: center;
            background: linear-gradient(45deg, #667eea 0%, #764ba2 100%);
            color: white;
            padding: 20px;
            border-radius: 10px;
            margin-bottom: 20px;
        }
        """
    ) as interface:
        
        # Header
        gr.HTML("""
        <div class="main-header">
            <h1>πŸŽ“ EDUTUTOR AI</h1>
            <p>Your Intelligent Educational Tutor powered by IBM Granite 3.3-2B</p>
            <p><em>Ask questions, learn concepts, and expand your knowledge!</em></p>
        </div>
        """)
        
        # Model initialization section
        with gr.Row():
            with gr.Column():
                init_button = gr.Button("πŸš€ Initialize EDUTUTOR AI", variant="primary", size="lg")
                init_status = gr.Textbox(
                    label="Initialization Status",
                    value="Click 'Initialize EDUTUTOR AI' to start",
                    interactive=False
                )
        
        # Main interface
        with gr.Row():
            with gr.Column(scale=2):
                # Input section
                with gr.Group():
                    gr.Markdown("### πŸ“ Ask Your Question")
                    question_input = gr.Textbox(
                        label="Your Question",
                        placeholder="e.g., Explain quantum physics, How does photosynthesis work?, What is machine learning?",
                        lines=3
                    )
                    
                    with gr.Row():
                        subject_dropdown = gr.Dropdown(
                            choices=[
                                "General", "Mathematics", "Physics", "Chemistry", 
                                "Biology", "Computer Science", "History", "Literature",
                                "Geography", "Economics", "Philosophy"
                            ],
                            value="General",
                            label="Subject Area"
                        )
                        
                        difficulty_dropdown = gr.Dropdown(
                            choices=["Beginner", "Intermediate", "Advanced"],
                            value="Intermediate",
                            label="Difficulty Level"
                        )
                    
                    max_length_slider = gr.Slider(
                        minimum=100,
                        maximum=1000,
                        value=512,
                        step=50,
                        label="Response Length (tokens)"
                    )
                    
                    ask_button = gr.Button("πŸ€” Ask EDUTUTOR AI", variant="primary")
            
            with gr.Column(scale=1):
                # Quick actions
                with gr.Group():
                    gr.Markdown("### ⚑ Quick Actions")
                    history_button = gr.Button("πŸ“š View Learning History")
                    clear_button = gr.Button("πŸ—‘οΈ Clear History")
                    
                    gr.Markdown("### πŸ’‘ Tips")
                    gr.Markdown("""
                    - Be specific with your questions
                    - Select appropriate subject and difficulty
                    - Use follow-up questions for deeper understanding
                    - Experiment with different difficulty levels
                    """)
        
        # Response section
        with gr.Row():
            response_output = gr.Textbox(
                label="πŸŽ“ EDUTUTOR AI Response",
                lines=15,
                max_lines=20,
                interactive=False
            )
        
        # History section
        with gr.Row():
            history_output = gr.Textbox(
                label="πŸ“š Learning Session History",
                lines=10,
                interactive=False,
                visible=False
            )
        
        # Event handlers
        init_button.click(
            fn=initialize_model,
            outputs=init_status
        )
        
        ask_button.click(
            fn=chat_with_edututor,
            inputs=[question_input, subject_dropdown, difficulty_dropdown, max_length_slider],
            outputs=response_output
        )
        
        question_input.submit(
            fn=chat_with_edututor,
            inputs=[question_input, subject_dropdown, difficulty_dropdown, max_length_slider],
            outputs=response_output
        )
        
        history_button.click(
            fn=edututor.get_conversation_history,
            outputs=history_output
        ).then(
            fn=lambda: gr.update(visible=True),
            outputs=history_output
        )
        
        clear_button.click(
            fn=edututor.clear_history,
            outputs=init_status
        )
    
    return interface

# Launch the application
if __name__ == "__main__":
    print("πŸŽ“ Starting EDUTUTOR AI...")
    print("=" * 50)
    
    # Create and launch interface
    demo = create_interface()
    
    # Launch for Hugging Face Spaces (simplified)
    demo.launch()