Spaces:
Sleeping
Sleeping
File size: 2,042 Bytes
a6492ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import streamlit as st
import pandas as pd
from loading_file import precomputed_df # Import pre-fetched dataset
# Function to search for application numbers
def search_application(application_number):
if precomputed_df is None:
st.error("Data not available. Please reload the app.")
return
# Ensure input is numeric only
if not application_number.isdigit():
st.error("Invalid input! Please enter only numeric application numbers.")
return
application_number = str(application_number)
result = precomputed_df[precomputed_df["Application Number"] == application_number]
if not result.empty:
st.success(f"Record found for Application Number: {application_number}")
st.table(result)
else:
st.warning(f"No record found for Application Number: {application_number}")
# Find nearest applications
precomputed_df["Application Number"] = precomputed_df["Application Number"].astype(int)
application_number = int(application_number)
nearest_before = precomputed_df[precomputed_df["Application Number"] < application_number].max()
nearest_after = precomputed_df[precomputed_df["Application Number"] > application_number].min()
nearest_df = pd.DataFrame([
{"Nearest Application": "Before", "Application Number": nearest_before["Application Number"], "Decision": nearest_before["Decision"], "Difference": abs(nearest_before["Application Number"] - application_number)},
{"Nearest Application": "After", "Application Number": nearest_after["Application Number"], "Decision": nearest_after["Decision"], "Difference": abs(nearest_after["Application Number"] - application_number)}
])
st.write("Nearest Application Numbers:")
st.table(nearest_df)
# UI for searching application numbers
st.title("Visa Application Status Checker")
application_number = st.text_input("Enter Application Number:")
if st.button("Search"):
search_application(application_number)
|