File size: 686 Bytes
a167399
0ed79c1
a167399
0ed79c1
 
a167399
 
 
0ed79c1
a167399
 
 
 
0ed79c1
a167399
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import pandas as pd
from dataframe import precomputed_df
import streamlit as st

def search_application(application_number):
    if precomputed_df is None:
        st.error("Data not available. Please try again later.")
        return None

    # Check for exact match
    exact_match = precomputed_df[precomputed_df["Application Number"] == application_number]
    if not exact_match.empty:
        return exact_match.iloc[0]

    # If no exact match, find nearest records
    precomputed_df["Difference"] = abs(precomputed_df["Application Number"] - application_number)
    nearest_records = precomputed_df.nsmallest(2, "Difference")
    return nearest_records.reset_index(drop=True)